一、创新点和解决的问题

创新点

设计Region Proposal Networks【RPN】,利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search、EdgeBoxes等方法,速度上提升明显;

训练Region Proposal Networks与检测网络【Fast R-CNN】共享卷积层,大幅提高网络的检测速度。

解决的问题

继Fast R-CNN后,在CPU上实现的区域建议算法Selective Search【2s/image】、EdgeBoxes【0.2s/image】等成了物体检测速度提升上的最大瓶颈。

二、整体框架

我们先整体的介绍下上图中各层主要的功能:

1)、Conv layers提取特征图:

作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取input image的feature maps,该feature maps会用于后续的RPN层和全连接层

2)、RPN(Region Proposal Networks):

RPN网络主要用于生成region proposals,首先生成一堆Anchor box,对其进行裁剪过滤后通过softmax判断anchors属于前景(foreground)或者后景(background),即是物体or不是物体,所以这是一个二分类;同时,另一分支bounding box regression修正anchor box,形成较精确的proposal(注:这里的较精确是相对于后面全连接层的再一次box regression而言)

3)、Roi Pooling:

该层利用RPN生成的proposals和VGG16最后一层得到的feature map,得到固定大小的proposal feature map,进入到后面可利用全连接操作来进行目标识别和定位

4)、Classifier:

会将Roi Pooling层形成固定大小的feature map进行全连接操作,利用Softmax进行具体类别的分类,同时,利用L1 Loss完成bounding box regression回归操作获得物体的精确位置.

 

三、网络结构

现在,通过上图开始逐层分析

1)Conv layers

Faster RCNN首先是支持输入任意大小的图片的,比如上图中输入的P*Q,进入网络之前对图片进行了规整化尺度的设定,如可设定图像短边不超过600,图像长边不超过1000,我们可以假定M*N=1000*600(如果图片少于该尺寸,可以边缘补0,即图像会有黑色边缘)

①   13个conv层:kernel_size=3,pad=1,stride=1;

卷积公式:

所以,conv层不会改变图片大小(即:输入的图片大小=输出的图片大小)

②   13个relu层:激活函数,不改变图片大小

③   4个pooling层:kernel_size=2,stride=2;pooling层会让输出图片是输入图片的1/2

经过Conv layers,图片大小变成(M/16)*(N/16),即:60*40(1000/16≈60,600/16≈40);则,Feature Map就是60*40*512-d(注:VGG16是512-d,ZF是256-d),表示特征图的大小为60*40,数量为512

2)RPN(Region Proposal Networks):

为了进一步更清楚的看懂RPN的工作原理,将Caffe版本下的网络图贴出来,对照网络图进行讲解会更清楚

(2.1) rpn_cls、 rpn_bbox

Feature Map进入RPN后,先经过一次3*3的卷积,同样,特征图大小依然是60*40,数量512,这样做的目的应该是进一步集中特征信息,接着看到两个全卷积,即kernel_size=1*1,p=0,stride=1;

如上图中标识:

①   rpn_cls:60*40*512-d ⊕  1*1*512*18 ==> 60*40*9*2

逐像素对其9个Anchor box进行二分类

②   rpn_bbox:60*40*512-d ⊕  1*1*512*36==>60*40*9*4

逐像素得到其9个Anchor box四个坐标信息(其实是偏移量,后面介绍)

如下图所示:

 (2.2)、Anchors的生成规则

前面提到经过Conv layers后,图片大小变成了原来的1/16,令feat_stride=16,在生成Anchors时,我们先定义一个base_anchor,大小为16*16的box(因为特征图(60*40)上的一个点,可以对应到原图(1000*600)上一个16*16大小的区域),源码中转化为[0,0,15,15]的数组,参数ratios=[0.5, 1, 2]scales=[8, 16, 32]

先看[0,0,15,15],面积保持不变,长、宽比分别为[0.5, 1, 2]是产生的Anchors box

如果经过scales变化,即长、宽分别均为 (16*8=128)、(16*16=256)、(16*32=512),对应anchor box如图

综合以上两种变换,最后生成9个Anchor box

特征图大小为60*40,所以会一共生成60*40*9=21600个Anchor box

源码中,通过width:(0~60)*16,height(0~40)*16建立shift偏移量数组,再和base_ancho基准坐标数组累加,得到特征图上所有像素对应的Anchors的坐标值,是一个[216000,4]的数组

(2.3)rpn-data

这一层主要是为特征图60*40上的每个像素生成9个Anchor box,并且对生成的Anchor box进行过滤和标记,参照源码,过滤和标记规则如下:

①    去除掉超过1000*600这原图的边界的anchor box

②    如果anchor box与ground truth的IoU值最大,标记为正样本,label=1

③    如果anchor box与ground truth的IoU>0.7,标记为正样本,label=1

④    如果anchor box与ground truth的IoU<0.3,标记为负样本,label=0

剩下的既不是正样本也不是负样本,不用于最终训练,label=-1

除了对anchor box进行标记外,另一件事情就是计算anchor box与ground truth之间的偏移量

令:ground truth:标定的框也对应一个中心点位置坐标x*,y*和宽高w*,h*

anchor box: 中心点位置坐标x_a,y_a和宽高w_a,h_a

所以,偏移量:

△x=(x*-x_a)/w_a   △y=(y*-y_a)/h_a

△w=log(w*/w_a)   △h=log(h*/h_a)

通过ground truth box与预测的anchor box之间的差异来进行学习,从而是RPN网络中的权重能够学习到预测box的能力

(2.4)rpn_loss_cls、rpn_loss_bbox、rpn_cls_prob

‘rpn_loss_cls’、‘rpn_loss_bbox’是分别对应softmax,smooth L1计算损失函数,‘rpn_cls_prob’计算概率值(可用于下一层的nms非最大值抑制操作)

(2.5)proposal

源码中,会重新生成60*40*9个anchor box,然后累加上训练好的△x, △y, △w, △h,从而得到了相较于之前更加准确的预测框region proposal,进一步对预测框进行越界剔除和使用nms非最大值抑制,剔除掉重叠的框;比如,设定IoU为0.7的阈值,即仅保留覆盖率不超过0.7的局部最大分数的box(粗筛)。最后留下大约2000个anchor,然后再取前N个box(比如300个);这样,进入到下一层ROI Pooling时region proposal大约只有300个

(2.6)roi_data

为了避免定义上的误解,我们将经过‘proposal’后的预测框称为region proposal(其实,RPN层的任务其实已经完成,roi_data属于为下一层准备数据)

主要作用:

①       RPN层只是来确定region proposal是否是物体(是/否),这里根据region proposal和ground truth box的最大重叠指定具体的标签(就不再是二分类问题了,参数中指定的是81类)

②       计算region proposal与ground truth boxes的偏移量,计算方法和之前的偏移量计算公式相同

经过这一步后的数据输入到ROI Pooling层进行进一步的分类和定位.

剩下的就是Fast R-CNN了。

参考:

https://www.cnblogs.com/wangyong/p/8513563.html

https://blog.csdn.net/WoPawn/article/details/52223282

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文理解的更多相关文章

  1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(理解)

    0 - 背景 R-CNN中检测步骤分成很多步骤,fast-RCNN便基于此进行改进,将region proposals的特征提取融合成共享卷积层问题,但是,fast-RCNN仍然采用了selectiv ...

  2. 中文版 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 摘要 最先进的目标检测网络依靠区域提出算法 ...

  3. 深度学习论文翻译解析(十三):Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Regi ...

  4. [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...

  5. 目标检测(四)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    作者:Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun SPPnet.Fast R-CNN等目标检测算法已经大幅降低了目标检测网络的运行时间. ...

  6. 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)

    论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...

  7. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    将 RCN 中下面 3 个独立模块整合在一起,减少计算量: CNN:提取图像特征 SVM:目标分类识别 Regression 模型:定位 不对每个候选区域独立通过 CN 提取特征,将整个图像通过 CN ...

  8. 【CV论文阅读】Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    由RCNN到FAST RCNN一个很重要的进步是实现了多任务的训练,但是仍然使用Selective Search算法来获得ROI,而FASTER RCNN就是把获得ROI的步骤使用一个深度网络RPN来 ...

  9. R-CNN(Rich feature hierarchies for accurate object detection and semantic segmentation)论文理解

    论文地址:https://arxiv.org/pdf/1311.2524.pdf 翻译请移步: https://www.cnblogs.com/xiaotongtt/p/6691103.html ht ...

随机推荐

  1. C++Builder6.0 新建和打开项目软件死机

    大清早上班打开C++Builder6.0软件,打开项目却卡死,甚是奇怪,然后尝试新建项目也同样卡死.尝试打开一个CPP文件,可以打开,再尝试打开项目.bpr文件,便打开了.至于原因为什么,那就不得而知 ...

  2. Java有序数组的实现

    package 有序数组; public class OrdArray { private long[]array; private int nElems; //初始化 public OrdArray ...

  3. Javascript-闰年javascript的判断

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. rabbitmq_坑

      一.None of the specified endpoints were reachable 这个异常在创建连接时抛出(CreateConnection()),原因一般是ConnectionF ...

  5. 排序的hashmap(guava)

    1.mvnrepository上搜索 guava.并引用其jar包 类似compile "com.google.guava:guava:18.0" 测试代码 Builder< ...

  6. Object-C-NSString

    NSString *info=@"Hello world"; NSString *info=[[NSString alloc]initWithFormat:@"my na ...

  7. Linux服务器---安装apache

    Apache安装    1.安装Apache,使用命令“yum install httpd -y” [root@localhost ~]# yum install httpd -y Loaded pl ...

  8. php打印负载函数、Linux awk打印负载

    php的sys_getloadavg sys_getloadavt()可以获得系统负载情况.该函数返回一个包含三个元素的数组,每个元素分别代表系统再过去的1.5和15分钟内的平均负载. 与其让服务器因 ...

  9. Python descriptor 以及 内置property()函数

    Python Descriptor  1, Python Descriptor是这样一个对象 它按照descriptor协议, 有这样的属性之一 def __get__(self, obj, type ...

  10. 20145307陈俊达_安卓逆向分析_APKtools分析smail

    20145307陈俊达_安卓逆向分析_APKtools分析smail 引言 真刺激呢!到了第二篇博客了,难度开始加大,之前是简单的dex2jar和有图形界面的jd-gui,现在来隆重介绍强大的反汇编工 ...