http://www.lydsy.com/JudgeOnline/problem.php?id=1010

题意:

思路:

容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k-1+sum[i]-sum[k]-l)^{2})$,$sum[i]$表示前i个玩具的$c_{i}$之和。$f(k)$表示前k个玩具的最小费用。

如果设$f(i)=sum[i]+i$,那么上式就可以改写为$dp(i)=min(dp(i),dp(k)+(f(i)-f(k)-l-1)^{2})$。

所以这道题目是很明显的斜率优化dp。

如果k决策比j决策更优的话,那么(c=l+1)

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,ll> pll;
const int INF = 0x3f3f3f3f;
const int maxn=+; ll n, l;
ll c[maxn];
ll dp[maxn];
ll sum[maxn];
ll Q[maxn]; ll dy(ll k, ll j)
{
return dp[k]+(sum[k]+l)*(sum[k]+l)-dp[j]-(sum[j]+l)*(sum[j]+l);
} ll dx(ll k, ll j)
{
return *(sum[k]-sum[j]);
} int main()
{
//freopen("in.txt","r",stdin);
while(~scanf("%lld%lld",&n,&l))
{
l+=;
sum[]=;
for(int i=;i<=n;i++)
{
scanf("%I64d",&c[i]);
sum[i]=sum[i-]+c[i];
}
for(int i=;i<=n;i++) sum[i]+=i;
Q[]=;
int frt=,rear=;
for(int i=;i<=n;i++)
{
while(frt<rear && dy(Q[frt+],Q[frt])<=sum[i]*dx(Q[frt+],Q[frt])) frt++;
int tmp=Q[frt];
dp[i]=dp[tmp]+(sum[i]-sum[tmp]-l)*(sum[i]-sum[tmp]-l);
while(frt<rear && dy(Q[rear],Q[rear-])*dx(i,Q[rear])>=dy(i,Q[rear])*dx(Q[rear],Q[rear-])) rear--;
Q[++rear]=i;
}
printf("%lld\n",dp[n]);
}
return ;
}

BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  2. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  3. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  4. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  5. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  7. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  9. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  10. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

随机推荐

  1. Spark SQL metaData配置到Mysql

    构造以spark为核心的数据仓库: 0.说明     在大数据领域,hive作为老牌的数据仓库比较流行,spark可以考虑兼容hive.但是如果不想用hive做数据仓库也无妨,大不了我们用spark建 ...

  2. [py]python的继承体系-源码目录结构

    python3安装目录 pip install virtualenv pip install virtualenvwrapper pip install virtualenvwrapper-win m ...

  3. find the safest road(弗洛伊德)

    http://acm.hdu.edu.cn/showproblem.php?pid=1596 #include <iostream> #include <stdio.h> #i ...

  4. iOS UI基础-1.0加法计算器

    1.打开Xcode,新建一个项目 2.Single View Application是最适合初学者的模板 3.填写该应用相关信息 4.搭建UI界面 项目创建完毕后,自动帮我们做了很多配置,也自动生成了 ...

  5. 树莓派3B新版raspbian系统换国内源

    树莓派新版系统更换了专门优化过的桌面环境PIXEL,正好手头有个闲置的TF卡决定刷上新版系统玩玩.下载刷系统过程很多教程页很简单.插卡,上电开机,释放卡上的剩余空间都很正常,因为树莓派官方源访问很慢下 ...

  6. 树莓派3Braspberry pi 如何汉化显示中文教程

    树莓派默认是采用英文字库的,而且系统里没有预装中文字库,所以即使你在locale中改成中文,也不会显示中文,只会显示一堆方块.因此需要我们手动来安装中文字体. 好在有一个中文字体是免费开源使用的.ss ...

  7. Javascript-逻辑判断或(&&)练习

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. linux下操作iso文件的两个shell程序

    记得这还是当初玩cdlinux时弄的,当初应该是由于windows下的Ultraiso对cdlinux的镜像修改后导致镜像无法引导,所以就使用linux下的命令进行操作 这应该是挂载iso文件的命令: ...

  9. 网络流-最大流 Dinic模板

    #include <bits/stdc++.h> using namespace std; #define MP make_pair #define PB push_back #defin ...

  10. [转]mac上安装android sdk

    一.先下载android sdk for mac 给二个靠谱的网址: a). http://down.tech.sina.com.cn/page/45703.html b). http://mac.s ...