Scrapy 和 scrapy-redis的区别

Scrapy 是一个通用的爬虫框架,但是不支持分布式,Scrapy-redis是为了更方便地实现Scrapy分布式爬取,而提供了一些以redis为基础的组件(仅有组件)。

pip install scrapy-redis

Scrapy-redis提供了下面四种组件(components):(四种组件意味着这四个模块都要做相应的修改)

  • Scheduler
    Duplication Filter
    Item Pipeline
    Base Spider

scrapy-redis架构

如上图所⽰示,scrapy-redis在scrapy的架构上增加了redis,基于redis的特性拓展了如下组件:

Scheduler

Scrapy改造了python本来的collection.deque(双向队列)形成了自己的Scrapy queue(https://github.com/scrapy/queuelib/blob/master/queuelib/queue.py)),但是Scrapy多个spider不能共享待爬取队列Scrapy queue, 即Scrapy本身不支持爬虫分布式,scrapy-redis 的解决是把这个Scrapy queue换成redis数据库(也是指redis队列),从同一个redis-server存放要爬取的request,便能让多个spider去同一个数据库里读取。

Scrapy中跟“待爬队列”直接相关的就是调度器Scheduler,它负责对新的request进行入列操作(加入Scrapy queue),取出下一个要爬取的request(从Scrapy queue中取出)等操作。它把待爬队列按照优先级建立了一个字典结构,比如:

   {
优先级0 : 队列0
优先级1 : 队列1
优先级2 : 队列2
}

然后根据request中的优先级,来决定该入哪个队列,出列时则按优先级较小的优先出列。为了管理这个比较高级的队列字典,Scheduler需要提供一系列的方法。但是原来的Scheduler已经无法使用,所以使用Scrapy-redis的scheduler组件。

Duplication Filter

Scrapy中用集合实现这个request去重功能,Scrapy中把已经发送的request指纹放入到一个集合中,把下一个request的指纹拿到集合中比对,如果该指纹存在于集合中,说明这个request发送过了,如果没有则继续操作。这个核心的判重功能是这样实现的:

    def request_seen(self, request):
# self.request_figerprints就是一个指纹集合
fp = self.request_fingerprint(request) # 这就是判重的核心操作
if fp in self.fingerprints:
return True
self.fingerprints.add(fp)
if self.file:
self.file.write(fp + os.linesep)

在scrapy-redis中去重是由Duplication Filter组件来实现的,它通过redis的set 不重复的特性,巧妙的实现了Duplication Filter去重。scrapy-redis调度器从引擎接受request,将request的指纹存⼊redis的set检查是否重复,并将不重复的request push写⼊redis的 request queue。

引擎请求request(Spider发出的)时,调度器从redis的request queue队列⾥里根据优先级pop 出⼀个request 返回给引擎,引擎将此request发给spider处理。

Item Pipeline

引擎将(Spider返回的)爬取到的Item给Item Pipeline,scrapy-redis 的Item Pipeline将爬取到的 Item 存⼊redis的 items queue。

修改过Item Pipeline可以很方便的根据 key 从 items queue 提取item,从⽽实现 items processes集群。

Base Spider

不在使用scrapy原有的Spider类,重写的RedisSpider继承了Spider和RedisMixin这两个类,RedisMixin是用来从redis读取url的类。

当我们生成一个Spider继承RedisSpider时,调用setup_redis函数,这个函数会去连接redis数据库,然后会设置signals(信号):

  • 一个是当spider空闲时候的signal,会调用spider_idle函数,这个函数调用schedule_next_request函数,保证spider是一直活着的状态,并且抛出DontCloseSpider异常。

  • 一个是当抓到一个item时的signal,会调用item_scraped函数,这个函数会调用schedule_next_request函数,获取下一个request。

官方站点:https://github.com/rolando/scrapy-redis

scrapy-redis的官方文档写的比较简洁,没有提及其运行原理,所以如果想全面的理解分布式爬虫的运行原理,还是得看scrapy-redis的源代码才行。

scrapy-redis工程的主体还是是redis和scrapy两个库,工程本身实现的东西不是很多,这个工程就像胶水一样,把这两个插件粘结了起来。下面我们来看看,scrapy-redis的每一个源代码文件都实现了什么功能,最后如何实现分布式的爬虫系统:

  1. connection.py

负责根据setting中配置实例化redis连接。被dupefilter和scheduler调用,总之涉及到redis存取的都要使用到这个模块。


# 这里引入了redis模块,这个是redis-python库的接口,用于通过python访问redis数据库,
# 这个文件主要是实现连接redis数据库的功能,这些连接接口在其他文件中经常被用到
import redis
import six from scrapy.utils.misc import load_object DEFAULT_REDIS_CLS = redis.StrictRedis # 可以在settings文件中配置套接字的超时时间、等待时间等
# Sane connection defaults.
DEFAULT_PARAMS = {
'socket_timeout': 30,
'socket_connect_timeout': 30,
'retry_on_timeout': True,
} # 要想连接到redis数据库,和其他数据库差不多,需要一个ip地址、端口号、用户名密码(可选)和一个整形的数据库编号
# Shortcut maps 'setting name' -> 'parmater name'.
SETTINGS_PARAMS_MAP = {
'REDIS_URL': 'url',
'REDIS_HOST': 'host',
'REDIS_PORT': 'port',
} def get_redis_from_settings(settings):
"""Returns a redis client instance from given Scrapy settings object.
This function uses ``get_client`` to instantiate the client and uses
``DEFAULT_PARAMS`` global as defaults values for the parameters. You can
override them using the ``REDIS_PARAMS`` setting.
Parameters
----------
settings : Settings
A scrapy settings object. See the supported settings below.
Returns
-------
server
Redis client instance.
Other Parameters
----------------
REDIS_URL : str, optional
Server connection URL.
REDIS_HOST : str, optional
Server host.
REDIS_PORT : str, optional
Server port.
REDIS_PARAMS : dict, optional
Additional client parameters.
"""
params = DEFAULT_PARAMS.copy()
params.update(settings.getdict('REDIS_PARAMS'))
# XXX: Deprecate REDIS_* settings.
for source, dest in SETTINGS_PARAMS_MAP.items():
val = settings.get(source)
if val:
params[dest] = val # Allow ``redis_cls`` to be a path to a class.
if isinstance(params.get('redis_cls'), six.string_types):
params['redis_cls'] = load_object(params['redis_cls']) # 返回的是redis库的Redis对象,可以直接用来进行数据操作的对象
return get_redis(**params) # Backwards compatible alias.
from_settings = get_redis_from_settings def get_redis(**kwargs):
"""Returns a redis client instance.
Parameters
----------
redis_cls : class, optional
Defaults to ``redis.StrictRedis``.
url : str, optional
If given, ``redis_cls.from_url`` is used to instantiate the class.
**kwargs
Extra parameters to be passed to the ``redis_cls`` class.
Returns
-------
server
Redis client instance.
"""
redis_cls = kwargs.pop('redis_cls', DEFAULT_REDIS_CLS)
url = kwargs.pop('url', None) if url:
return redis_cls.from_url(url, **kwargs)
else:
return redis_cls(**kwargs)
 

dupefilter.py

负责执行requst的去重,实现的很有技巧性,使用redis的set数据结构。但是注意scheduler并不使用其中用于在这个模块中实现的dupefilter键做request的调度,而是使用queue.py模块中实现的queue。

当request不重复时,将其存入到queue中,调度时将其弹出。

import logging
import time from scrapy.dupefilters import BaseDupeFilter
from scrapy.utils.request import request_fingerprint from .connection import get_redis_from_settings DEFAULT_DUPEFILTER_KEY = "dupefilter:%(timestamp)s" logger = logging.getLogger(__name__) # TODO: Rename class to RedisDupeFilter.
class RFPDupeFilter(BaseDupeFilter):
"""Redis-based request duplicates filter.
This class can also be used with default Scrapy's scheduler.
""" logger = logger def __init__(self, server, key, debug=False):
"""Initialize the duplicates filter.
Parameters
----------
server : redis.StrictRedis
The redis server instance.
key : str
Redis key Where to store fingerprints.
debug : bool, optional
Whether to log filtered requests.
"""
self.server = server
self.key = key
self.debug = debug
self.logdupes = True @classmethod
def from_settings(cls, settings):
"""Returns an instance from given settings.
This uses by default the key ``dupefilter:<timestamp>``. When using the
``scrapy_redis.scheduler.Scheduler`` class, this method is not used as
it needs to pass the spider name in the key.
Parameters
----------
settings : scrapy.settings.Settings
Returns
-------
RFPDupeFilter
A RFPDupeFilter instance.
"""
server = get_redis_from_settings(settings)
# XXX: This creates one-time key. needed to support to use this
# class as standalone dupefilter with scrapy's default scheduler
# if scrapy passes spider on open() method this wouldn't be needed
# TODO: Use SCRAPY_JOB env as default and fallback to timestamp.
key = DEFAULT_DUPEFILTER_KEY % {'timestamp': int(time.time())}
debug = settings.getbool('DUPEFILTER_DEBUG')
return cls(server, key=key, debug=debug) @classmethod
def from_crawler(cls, crawler):
"""Returns instance from crawler.
Parameters
----------
crawler : scrapy.crawler.Crawler
Returns
-------
RFPDupeFilter
Instance of RFPDupeFilter.
"""
return cls.from_settings(crawler.settings) def request_seen(self, request):
"""Returns True if request was already seen.
Parameters
----------
request : scrapy.http.Request
Returns
-------
bool
"""
fp = self.request_fingerprint(request)
# This returns the number of values added, zero if already exists.
added = self.server.sadd(self.key, fp)
return added == 0 def request_fingerprint(self, request):
"""Returns a fingerprint for a given request.
Parameters
----------
request : scrapy.http.Request
Returns
-------
str
"""
return request_fingerprint(request) def close(self, reason=''):
"""Delete data on close. Called by Scrapy's scheduler.
Parameters
----------
reason : str, optional
"""
self.clear() def clear(self):
"""Clears fingerprints data."""
self.server.delete(self.key) def log(self, request, spider):
"""Logs given request.
Parameters
----------
request : scrapy.http.Request
spider : scrapy.spiders.Spider
"""
if self.debug:
msg = "Filtered duplicate request: %(request)s"
self.logger.debug(msg, {'request': request}, extra={'spider': spider})
elif self.logdupes:
msg = ("Filtered duplicate request %(request)s"
" - no more duplicates will be shown"
" (see DUPEFILTER_DEBUG to show all duplicates)")
msg = "Filtered duplicate request: %(request)s"
self.logger.debug(msg, {'request': request}, extra={'spider': spider})
self.logdupes = False

这个文件看起来比较复杂,重写了scrapy本身已经实现的request判重功能。因为本身scrapy单机跑的话,只需要读取内存中的request队列或者持久化的request队列(scrapy默认的持久化似乎是json格式的文件,不是数据库)就能判断这次要发出的request url是否已经请求过或者正在调度(本地读就行了)。而分布式跑的话,就需要各个主机上的scheduler都连接同一个数据库的同一个request池来判断这次的请求是否是重复的了。

在这个文件中,通过继承BaseDupeFilter重写他的方法,实现了基于redis的判重。根据源代码来看,scrapy-redis使用了scrapy本身的一个fingerprint接request_fingerprint,这个接口很有趣,根据scrapy文档所说,他通过hash来判断两个url是否相同(相同的url会生成相同的hash结果),但是当两个url的地址相同,get型参数相同但是顺序不同时,也会生成相同的hash结果(这个真的比较神奇。。。)所以scrapy-redis依旧使用url的fingerprint来判断request请求是否已经出现过。

这个类通过连接redis,使用一个key来向redis的一个set中插入fingerprint(这个key对于同一种spider是相同的,redis是一个key-value的数据库,如果key是相同的,访问到的值就是相同的,这里使用spider名字+DupeFilter的key就是为了在不同主机上的不同爬虫实例,只要属于同一种spider,就会访问到同一个set,而这个set就是他们的url判重池),如果返回值为0,说明该set中该fingerprint已经存在(因为集合是没有重复值的),则返回False,如果返回值为1,说明添加了一个fingerprint到set中,则说明这个request没有重复,于是返回True,还顺便把新fingerprint加入到数据库中了。 DupeFilter判重会在scheduler类中用到,每一个request在进入调度之前都要进行判重,如果重复就不需要参加调度,直接舍弃就好了,不然就是白白浪费资源。

picklecompat.py

"""A pickle wrapper module with protocol=-1 by default."""

try:
import cPickle as pickle # PY2
except ImportError:
import pickle def loads(s):
return pickle.loads(s) def dumps(obj):
return pickle.dumps(obj, protocol=-1)

这里实现了loads和dumps两个函数,其实就是实现了一个序列化器。

因为redis数据库不能存储复杂对象(key部分只能是字符串,value部分只能是字符串,字符串列表,字符串集合和hash),所以我们存啥都要先串行化成文本才行。

这里使用的就是python的pickle模块,一个兼容py2和py3的串行化工具。这个serializer主要用于一会的scheduler存reuqest对象。

pipelines.py

这是是用来实现分布式处理的作用。它将Item存储在redis中以实现分布式处理。由于在这里需要读取配置,所以就用到了from_crawler()函数。

from scrapy.utils.misc import load_object
from scrapy.utils.serialize import ScrapyJSONEncoder
from twisted.internet.threads import deferToThread from . import connection default_serialize = ScrapyJSONEncoder().encode class RedisPipeline(object):
"""Pushes serialized item into a redis list/queue""" def __init__(self, server,
key='%(spider)s:items',
serialize_func=default_serialize):
self.server = server
self.key = key
self.serialize = serialize_func @classmethod
def from_settings(cls, settings):
params = {
'server': connection.from_settings(settings),
}
if settings.get('REDIS_ITEMS_KEY'):
params['key'] = settings['REDIS_ITEMS_KEY']
if settings.get('REDIS_ITEMS_SERIALIZER'):
params['serialize_func'] = load_object(
settings['REDIS_ITEMS_SERIALIZER']
) return cls(**params) @classmethod
def from_crawler(cls, crawler):
return cls.from_settings(crawler.settings) def process_item(self, item, spider):
return deferToThread(self._process_item, item, spider) def _process_item(self, item, spider):
key = self.item_key(item, spider)
data = self.serialize(item)
self.server.rpush(key, data)
return item def item_key(self, item, spider):
"""Returns redis key based on given spider.
Override this function to use a different key depending on the item
and/or spider.
"""
return self.key % {'spider': spider.name}

pipelines文件实现了一个item pipieline类,和scrapy的item pipeline是同一个对象,通过从settings中拿到我们配置的REDIS_ITEMS_KEY作为key,把item串行化之后存入redis数据库对应的value中(这个value可以看出出是个list,我们的每个item是这个list中的一个结点),这个pipeline把提取出的item存起来,主要是为了方便我们延后处理数据。

queue.py

该文件实现了几个容器类,可以看这些容器和redis交互频繁,同时使用了我们上边picklecompat中定义的序列化器。这个文件实现的几个容器大体相同,只不过一个是队列,一个是栈,一个是优先级队列,这三个容器到时候会被scheduler对象实例化,来实现request的调度。比如我们使用SpiderQueue最为调度队列的类型,到时候request的调度方法就是先进先出,而实用SpiderStack就是先进后出了。

从SpiderQueue的实现看出来,他的push函数就和其他容器的一样,只不过push进去的request请求先被scrapy的接口request_to_dict变成了一个dict对象(因为request对象实在是比较复杂,有方法有属性不好串行化),之后使用picklecompat中的serializer串行化为字符串,然后使用一个特定的key存入redis中(该key在同一种spider中是相同的)。而调用pop时,其实就是从redis用那个特定的key去读其值(一个list),从list中读取最早进去的那个,于是就先进先出了。 这些容器类都会作为scheduler调度request的容器,scheduler在每个主机上都会实例化一个,并且和spider一一对应,所以分布式运行时会有一个spider的多个实例和一个scheduler的多个实例存在于不同的主机上,但是,因为scheduler都是用相同的容器,而这些容器都连接同一个redis服务器,又都使用spider名加queue来作为key读写数据,所以不同主机上的不同爬虫实例公用一个request调度池,实现了分布式爬虫之间的统一调度。

from scrapy.utils.reqser import request_to_dict, request_from_dict

from . import picklecompat

class Base(object):
"""Per-spider queue/stack base class""" def __init__(self, server, spider, key, serializer=None):
"""Initialize per-spider redis queue.
Parameters:
server -- redis connection
spider -- spider instance
key -- key for this queue (e.g. "%(spider)s:queue")
"""
if serializer is None:
# Backward compatibility.
# TODO: deprecate pickle.
serializer = picklecompat
if not hasattr(serializer, 'loads'):
raise TypeError("serializer does not implement 'loads' function: %r"
% serializer)
if not hasattr(serializer, 'dumps'):
raise TypeError("serializer '%s' does not implement 'dumps' function: %r"
% serializer) self.server = server
self.spider = spider
self.key = key % {'spider': spider.name}
self.serializer = serializer def _encode_request(self, request):
"""Encode a request object"""
obj = request_to_dict(request, self.spider)
return self.serializer.dumps(obj) def _decode_request(self, encoded_request):
"""Decode an request previously encoded"""
obj = self.serializer.loads(encoded_request)
return request_from_dict(obj, self.spider) def __len__(self):
"""Return the length of the queue"""
raise NotImplementedError def push(self, request):
"""Push a request"""
raise NotImplementedError def pop(self, timeout=0):
"""Pop a request"""
raise NotImplementedError def clear(self):
"""Clear queue/stack"""
self.server.delete(self.key) class SpiderQueue(Base):
"""Per-spider FIFO queue""" def __len__(self):
"""Return the length of the queue"""
return self.server.llen(self.key) def push(self, request):
"""Push a request"""
self.server.lpush(self.key, self._encode_request(request)) def pop(self, timeout=0):
"""Pop a request"""
if timeout > 0:
data = self.server.brpop(self.key, timeout)
if isinstance(data, tuple):
data = data[1]
else:
data = self.server.rpop(self.key)
if data:
return self._decode_request(data) class SpiderPriorityQueue(Base):
"""Per-spider priority queue abstraction using redis' sorted set""" def __len__(self):
"""Return the length of the queue"""
return self.server.zcard(self.key) def push(self, request):
"""Push a request"""
data = self._encode_request(request)
score = -request.priority
# We don't use zadd method as the order of arguments change depending on
# whether the class is Redis or StrictRedis, and the option of using
# kwargs only accepts strings, not bytes.
self.server.execute_command('ZADD', self.key, score, data) def pop(self, timeout=0):
"""
Pop a request
timeout not support in this queue class
"""
# use atomic range/remove using multi/exec
pipe = self.server.pipeline()
pipe.multi()
pipe.zrange(self.key, 0, 0).zremrangebyrank(self.key, 0, 0)
results, count = pipe.execute()
if results:
return self._decode_request(results[0]) class SpiderStack(Base):
"""Per-spider stack""" def __len__(self):
"""Return the length of the stack"""
return self.server.llen(self.key) def push(self, request):
"""Push a request"""
self.server.lpush(self.key, self._encode_request(request)) def pop(self, timeout=0):
"""Pop a request"""
if timeout > 0:
data = self.server.blpop(self.key, timeout)
if isinstance(data, tuple):
data = data[1]
else:
data = self.server.lpop(self.key) if data:
return self._decode_request(data) __all__ = ['SpiderQueue', 'SpiderPriorityQueue', 'SpiderStack']

scheduler.py

此扩展是对scrapy中自带的scheduler的替代(在settings的SCHEDULER变量中指出),正是利用此扩展实现crawler的分布式调度。其利用的数据结构来自于queue中实现的数据结构。

scrapy-redis所实现的两种分布式:爬虫分布式以及item处理分布式就是由模块scheduler和模块pipelines实现。上述其它模块作为为二者辅助的功能模块

import importlib
import six from scrapy.utils.misc import load_object from . import connection # TODO: add SCRAPY_JOB support.
class Scheduler(object):
"""Redis-based scheduler""" def __init__(self, server,
persist=False,
flush_on_start=False,
queue_key='%(spider)s:requests',
queue_cls='scrapy_redis.queue.SpiderPriorityQueue',
dupefilter_key='%(spider)s:dupefilter',
dupefilter_cls='scrapy_redis.dupefilter.RFPDupeFilter',
idle_before_close=0,
serializer=None):
"""Initialize scheduler.
Parameters
----------
server : Redis
The redis server instance.
persist : bool
Whether to flush requests when closing. Default is False.
flush_on_start : bool
Whether to flush requests on start. Default is False.
queue_key : str
Requests queue key.
queue_cls : str
Importable path to the queue class.
dupefilter_key : str
Duplicates filter key.
dupefilter_cls : str
Importable path to the dupefilter class.
idle_before_close : int
Timeout before giving up.
"""
if idle_before_close < 0:
raise TypeError("idle_before_close cannot be negative") self.server = server
self.persist = persist
self.flush_on_start = flush_on_start
self.queue_key = queue_key
self.queue_cls = queue_cls
self.dupefilter_cls = dupefilter_cls
self.dupefilter_key = dupefilter_key
self.idle_before_close = idle_before_close
self.serializer = serializer
self.stats = None def __len__(self):
return len(self.queue) @classmethod
def from_settings(cls, settings):
kwargs = {
'persist': settings.getbool('SCHEDULER_PERSIST'),
'flush_on_start': settings.getbool('SCHEDULER_FLUSH_ON_START'),
'idle_before_close': settings.getint('SCHEDULER_IDLE_BEFORE_CLOSE'),
} # If these values are missing, it means we want to use the defaults.
optional = {
# TODO: Use custom prefixes for this settings to note that are
# specific to scrapy-redis.
'queue_key': 'SCHEDULER_QUEUE_KEY',
'queue_cls': 'SCHEDULER_QUEUE_CLASS',
'dupefilter_key': 'SCHEDULER_DUPEFILTER_KEY',
# We use the default setting name to keep compatibility.
'dupefilter_cls': 'DUPEFILTER_CLASS',
'serializer': 'SCHEDULER_SERIALIZER',
}
for name, setting_name in optional.items():
val = settings.get(setting_name)
if val:
kwargs[name] = val # Support serializer as a path to a module.
if isinstance(kwargs.get('serializer'), six.string_types):
kwargs['serializer'] = importlib.import_module(kwargs['serializer']) server = connection.from_settings(settings)
# Ensure the connection is working.
server.ping() return cls(server=server, **kwargs) @classmethod
def from_crawler(cls, crawler):
instance = cls.from_settings(crawler.settings)
# FIXME: for now, stats are only supported from this constructor
instance.stats = crawler.stats
return instance def open(self, spider):
self.spider = spider try:
self.queue = load_object(self.queue_cls)(
server=self.server,
spider=spider,
key=self.queue_key % {'spider': spider.name},
serializer=self.serializer,
)
except TypeError as e:
raise ValueError("Failed to instantiate queue class '%s': %s",
self.queue_cls, e) try:
self.df = load_object(self.dupefilter_cls)(
server=self.server,
key=self.dupefilter_key % {'spider': spider.name},
debug=spider.settings.getbool('DUPEFILTER_DEBUG'),
)
except TypeError as e:
raise ValueError("Failed to instantiate dupefilter class '%s': %s",
self.dupefilter_cls, e) if self.flush_on_start:
self.flush()
# notice if there are requests already in the queue to resume the crawl
if len(self.queue):
spider.log("Resuming crawl (%d requests scheduled)" % len(self.queue)) def close(self, reason):
if not self.persist:
self.flush() def flush(self):
self.df.clear()
self.queue.clear() def enqueue_request(self, request):
if not request.dont_filter and self.df.request_seen(request):
self.df.log(request, self.spider)
return False
if self.stats:
self.stats.inc_value('scheduler/enqueued/redis', spider=self.spider)
self.queue.push(request)
return True def next_request(self):
block_pop_timeout = self.idle_before_close
request = self.queue.pop(block_pop_timeout)
if request and self.stats:
self.stats.inc_value('scheduler/dequeued/redis', spider=self.spider)
return request def has_pending_requests(self):
return len(self) > 0

这个文件重写了scheduler类,用来代替scrapy.core.scheduler的原有调度器。其实对原有调度器的逻辑没有很大的改变,主要是使用了redis作为数据存储的媒介,以达到各个爬虫之间的统一调度。 scheduler负责调度各个spider的request请求,scheduler初始化时,通过settings文件读取queue和dupefilters的类型(一般就用上边默认的),配置queue和dupefilters使用的key(一般就是spider name加上queue或者dupefilters,这样对于同一种spider的不同实例,就会使用相同的数据块了)。每当一个request要被调度时,enqueue_request被调用,scheduler使用dupefilters来判断这个url是否重复,如果不重复,就添加到queue的容器中(先进先出,先进后出和优先级都可以,可以在settings中配置)。当调度完成时,next_request被调用,scheduler就通过queue容器的接口,取出一个request,把他发送给相应的spider,让spider进行爬取工作。

spider.py

设计的这个spider从redis中读取要爬的url,然后执行爬取,若爬取过程中返回更多的url,那么继续进行直至所有的request完成。之后继续从redis中读取url,循环这个过程。

分析:在这个spider中通过connect signals.spider_idle信号实现对crawler状态的监视。当idle时,返回新的make_requests_from_url(url)给引擎,进而交给调度器调度。

from scrapy import signals
from scrapy.exceptions import DontCloseSpider
from scrapy.spiders import Spider, CrawlSpider from . import connection # Default batch size matches default concurrent requests setting.
DEFAULT_START_URLS_BATCH_SIZE = 16
DEFAULT_START_URLS_KEY = '%(name)s:start_urls' class RedisMixin(object):
"""Mixin class to implement reading urls from a redis queue."""
# Per spider redis key, default to DEFAULT_START_URLS_KEY.
redis_key = None
# Fetch this amount of start urls when idle. Default to DEFAULT_START_URLS_BATCH_SIZE.
redis_batch_size = None
# Redis client instance.
server = None def start_requests(self):
"""Returns a batch of start requests from redis."""
return self.next_requests() def setup_redis(self, crawler=None):
"""Setup redis connection and idle signal.
This should be called after the spider has set its crawler object.
"""
if self.server is not None:
return if crawler is None:
# We allow optional crawler argument to keep backwards
# compatibility.
# XXX: Raise a deprecation warning.
crawler = getattr(self, 'crawler', None) if crawler is None:
raise ValueError("crawler is required") settings = crawler.settings if self.redis_key is None:
self.redis_key = settings.get(
'REDIS_START_URLS_KEY', DEFAULT_START_URLS_KEY,
) self.redis_key = self.redis_key % {'name': self.name} if not self.redis_key.strip():
raise ValueError("redis_key must not be empty") if self.redis_batch_size is None:
self.redis_batch_size = settings.getint(
'REDIS_START_URLS_BATCH_SIZE', DEFAULT_START_URLS_BATCH_SIZE,
) try:
self.redis_batch_size = int(self.redis_batch_size)
except (TypeError, ValueError):
raise ValueError("redis_batch_size must be an integer") self.logger.info("Reading start URLs from redis key '%(redis_key)s' "
"(batch size: %(redis_batch_size)s)", self.__dict__) self.server = connection.from_settings(crawler.settings)
# The idle signal is called when the spider has no requests left,
# that's when we will schedule new requests from redis queue
crawler.signals.connect(self.spider_idle, signal=signals.spider_idle) def next_requests(self):
"""Returns a request to be scheduled or none."""
use_set = self.settings.getbool('REDIS_START_URLS_AS_SET')
fetch_one = self.server.spop if use_set else self.server.lpop
# XXX: Do we need to use a timeout here?
found = 0
while found < self.redis_batch_size:
data = fetch_one(self.redis_key)
if not data:
# Queue empty.
break
req = self.make_request_from_data(data)
if req:
yield req
found += 1
else:
self.logger.debug("Request not made from data: %r", data) if found:
self.logger.debug("Read %s requests from '%s'", found, self.redis_key) def make_request_from_data(self, data):
# By default, data is an URL.
if '://' in data:
return self.make_requests_from_url(data)
else:
self.logger.error("Unexpected URL from '%s': %r", self.redis_key, data) def schedule_next_requests(self):
"""Schedules a request if available"""
for req in self.next_requests():
self.crawler.engine.crawl(req, spider=self) def spider_idle(self):
"""Schedules a request if available, otherwise waits."""
# XXX: Handle a sentinel to close the spider.
self.schedule_next_requests()
raise DontCloseSpider class RedisSpider(RedisMixin, Spider):
"""Spider that reads urls from redis queue when idle.""" @classmethod
def from_crawler(self, crawler, *args, **kwargs):
obj = super(RedisSpider, self).from_crawler(crawler, *args, **kwargs)
obj.setup_redis(crawler)
return obj class RedisCrawlSpider(RedisMixin, CrawlSpider):
"""Spider that reads urls from redis queue when idle.""" @classmethod
def from_crawler(self, crawler, *args, **kwargs):
obj = super(RedisCrawlSpider, self).from_crawler(crawler, *args, **kwargs)
obj.setup_redis(crawler)
return obj

spider的改动也不是很大,主要是通过connect接口,给spider绑定了spider_idle信号,spider初始化时,通过setup_redis函数初始化好和redis的连接,之后通过next_requests函数从redis中取出strat url,使用的key是settings中REDIS_START_URLS_AS_SET定义的(注意了这里的初始化url池和我们上边的queue的url池不是一个东西,queue的池是用于调度的,初始化url池是存放入口url的,他们都存在redis中,但是使用不同的key来区分,就当成是不同的表吧),spider使用少量的start url,可以发展出很多新的url,这些url会进入scheduler进行判重和调度。直到spider跑到调度池内没有url的时候,会触发spider_idle信号,从而触发spider的next_requests函数,再次从redis的start url池中读取一些url。

总结

最后总结一下scrapy-redis的总体思路:这个工程通过重写scheduler和spider类,实现了调度、spider启动和redis的交互。实现新的dupefilter和queue类,达到了判重和调度容器和redis的交互,因为每个主机上的爬虫进程都访问同一个redis数据库,所以调度和判重都统一进行统一管理,达到了分布式爬虫的目的。 当spider被初始化时,同时会初始化一个对应的scheduler对象,这个调度器对象通过读取settings,配置好自己的调度容器queue和判重工具dupefilter。每当一个spider产出一个request的时候,scrapy内核会把这个reuqest递交给这个spider对应的scheduler对象进行调度,scheduler对象通过访问redis对request进行判重,如果不重复就把他添加进redis中的调度池。当调度条件满足时,scheduler对象就从redis的调度池中取出一个request发送给spider,让他爬取。当spider爬取的所有暂时可用url之后,scheduler发现这个spider对应的redis的调度池空了,于是触发信号spider_idle,spider收到这个信号之后,直接连接redis读取strart url池,拿去新的一批url入口,然后再次重复上边的工作。

scrapy与redis分布式组件的更多相关文章

  1. Python分布式爬虫打造搜索引擎完整版-基于Scrapy、Redis、elasticsearch和django打造一个完整的搜索引擎网站

    Python分布式爬虫打造搜索引擎 基于Scrapy.Redis.elasticsearch和django打造一个完整的搜索引擎网站 https://github.com/mtianyan/Artic ...

  2. scrapy框架之分布式操作

    分布式概念 分布式爬虫: 1.概念:多台机器上可以执行同一个爬虫程序,实现网站数据的分布爬取. 2.原生的scrapy是不可以实现分布式爬虫? a)调度器无法共享 b)管道无法共享 3.scrapy- ...

  3. 6 scrapy框架之分布式操作

    分布式爬虫 一.redis简单回顾 1.启动redis: mac/linux:   redis-server redis.conf windows: redis-server.exe redis-wi ...

  4. 爬虫开发14.scrapy框架之分布式操作

    分布式爬虫 一.redis简单回顾 1.启动redis: mac/linux:   redis-server redis.conf windows: redis-server.exe redis-wi ...

  5. Redis分布式集群几点说道

    原文地址:http://www.cnblogs.com/verrion/p/redis_structure_type_selection.html  Redis分布式集群几点说道 Redis数据量日益 ...

  6. Redis分布式锁服务(八)

    阅读目录: 概述 分布式锁 多实例分布式锁 总结 概述 在多线程环境下,通常会使用锁来保证有且只有一个线程来操作共享资源.比如: object obj = new object(); lock (ob ...

  7. j2ee分布式架构 dubbo + springmvc + mybatis + ehcache + redis 分布式架构

    介绍 <modules>        <!-- jeesz 工具jar -->        <module>jeesz-utils</module> ...

  8. redis咋么实现分布式锁,redis分布式锁的实现方式,redis做分布式锁 积极正义的少年

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  9. Redis分布式锁的正确实现方式

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

随机推荐

  1. 使用Visual Studio Code开发Asp.Net Core WebApi学习笔记(二)-- Web Api Demo

    在上一篇里,我已经建立了一个简单的Web-Demo应用程序.这一篇将记录将此Demo程序改造成一个Web Api应用程序. 一.添加ASP.NET Core MVC包 1. 在project.json ...

  2. LeetCode Pascal's Triangle && Pascal's Triangle II Python

    Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, given ...

  3. saltops 安装及相关环境安装

    本次布署测试环境 阿里云 Centos 7.3 1.安装nginx,这里采用yum 安装方式 A.yum install nginx B.创建开机启动 systemctl enable nginx.s ...

  4. python之 列表常用方法

    更多列表的使用方法和API,请参考Python文档:http://docs.python.org/2/library/functions.html append:用于在列表末尾追加新对象: # app ...

  5. ORA-10997:another startup/shutdown operation of this instance in progress解决方法

    SQL> startup ORA-10997: another startup/shutdown operation of this instance inprogress ORA-09967: ...

  6. Microsoft Dynamics CRM 4.0 如何添加自定义按钮

    一.通过导入导出ISV.Config(ISV配置),具体如下图: 先设置—>打开导出自定义项—>选择ISV配置—>选择导出所选自定义项 点击确定 保存到桌面,解压,用VS打开cust ...

  7. Maven 项目报告插件

    Maven 项目报告插件,都是对于前面生成的项目站点的内容丰富,因此都是基于项目站点的,生成的命令和生成项目站点一致(mvn site),项目报告插件的配置和一般插件不同,是在 project-> ...

  8. 【python】列表&&元组&&字典

    列表:用“[]”包裹,可对值增删改. 列表遍历: 方法一: alist=["a","b","c","d","e ...

  9. 电路交换vs分组交换

    电路交换 交换:动态分配传输线路资源. 须经过:建立连接 -> 通话 -> 释放连接. 特点:传输效率低(大部分时间空闲). 分组交换 位于网络边缘的主机&位于网络核心的路由器都是 ...

  10. ToString yyyy-MM-dd ,MM 小写的故事。

    ToString MM 小写,有可能时间转为 :2013-49-02,放到数据库中查询,就报错.