LINK


思路

首先因为式子后面把方案数乘上了

所以其实只用输出所有方案的攻击力总和

然后很显然可以用强化牌就尽量用

因为每次强化至少把下面的牌翻一倍,肯定是更优的

然后就只有两种情况

  • 强化牌数量少于k
  • 强化牌数量大于等于k

根据乘法原理,设\(f_{i,j}\)是选i张强化牌用j张的倍数总和,\(g_{i,j}\)是选i张攻击用j张的倍数总和

\(ans+=f_{k,k}*g_{m-i,m-k}\)

\(ans+=f_{i,k-1}*g_{m-i,1}\)

然后f的计算可以量化大小这个东西,就是先排序

dp出选了i个数,最后一个在j的方案数,这样前面的j各种不可能选出其他数,对于后面的数直接组合数计算就可以了


#include<bits/stdc++.h>

using namespace std;

const int Mod = 998244353;

const int N = 3e3 + 10;

int n, m, k, a[N], b[N], c[N][N];
int sum[N], f[N][N], g[N][N]; int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
} int mul(int a, int b) {
return 1ll * a * b % Mod;
} void init() {
for (int i = 0; i < N; i++) c[i][0] = 1;
for (int i = 1; i < N; i++) {
for (int j = 1; j <= i; j++) {
c[i][j] = add(c[i - 1][j], c[i - 1][j - 1]);
}
}
} int calcf(int a, int b) { // 取a张用b张
if (a < b) return 0;
if (!b) return c[n][a]; //**
int res = 0;
for (int i = 1; i <= n; i++)
res = add(res, mul(f[b][i], c[n - i][a - b]));
return res;
} int calcg(int a, int b) {
if (a < b) return 0;
if (!b) return 0; //**
int res = 0;
for (int i = 1; i <= n; i++)
res = add(res, mul(g[b][i], c[n - i][a - b]));
return res;
} void solve() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) scanf("%d", &b[i]);
sort(a + 1, a + n + 1, [&](const int a, const int b) {return a > b;});
sort(b + 1, b + n + 1, [&](const int a, const int b) {return a > b;});
for (int i = 1; i <= n; i++) {
f[1][i] = a[i];
sum[i] = add(sum[i - 1], a[i]);
}
for (int i = 2; i <= n; i++) {
for (int j = i; j <= n; j++)
f[i][j] = mul(sum[j - 1], a[j]);
for (int j = 1; j <= n; j++)
sum[j] = add(sum[j - 1], f[i][j]);
}
for (int i = 1; i <= n; i++) {
g[1][i] = b[i];
sum[i] = add(sum[i - 1], b[i]);
}
for (int i = 2; i <= n; i++) {
for (int j = i; j <= n; j++) {
g[i][j] = add(mul(b[j], c[j - 1][i - 1]), sum[j - 1]);
}
for (int j = 1; j <= n; j++)
sum[j] = add(sum[j - 1], g[i][j]);
}
int ans = 0;
for (int i = max(0, m - n); i <= min(n, m); i++) {
if (i < k) ans = add(ans, mul(calcf(i, i), calcg(m - i, k - i)));
else ans = add(ans, mul(calcf(i, k - 1), calcg(m - i, 1)));
}
printf("%d\n", ans);
} int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
init();
int T; scanf("%d", &T);
while (T--) solve();
return 0;
}

LOJ2538. 「PKUWC2018」Slay the Spire【组合数学】的更多相关文章

  1. loj2538 「PKUWC2018」Slay the Spire 【dp】

    题目链接 loj2538 题解 比较明显的是,由于强化牌倍数大于\(1\),肯定是能用强化牌尽量用强化牌 如果强化牌大于等于\(k\),就留一个位给攻击牌 所以我们将两种牌分别排序,企图计算\(F(i ...

  2. loj #2538. 「PKUWC2018」Slay the Spire

    $ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...

  3. 【LOJ】#2538. 「PKUWC2018」Slay the Spire

    题解 由于强化卡都是大于1的,我们分析一下就会发现,尽可能多的用强化卡,至少用一张攻击卡,一定是每组卡牌的最优选择 所以我们把攻击卡和强化卡从大到小排序 我们设\(g[i][j]\)表示前i张卡牌里选 ...

  4. 「PKUWC2018」Slay the Spire

    题目链接 题意分析 这个题其实不是期望 就是一共有\(C_{2n}^m\)种情况 每一种情况选择\(k\)张牌 然后求最大攻击值的总和 我们考虑 当前抽出了选出了\(i\)张强化牌 \(m-i\)张攻 ...

  5. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  6. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  7. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  8. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

  9. loj#2537. 「PKUWC2018」Minimax

    题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...

随机推荐

  1. shell 特殊变量详解

    $0 获取当前执行脚本的名称,包括路径 [root@centos test]# cat test.sh echo $0 [root@VM_102_244_centos test]# bash test ...

  2. Docker 容器十诫

    [编者按]本文作者为 Rafael Benevides,主要介绍使用 Docker 容器时应该注意的十个陷阱. Docker 容器十诫 当你刚开始使用容器时,会发现容器能解决许多问题,而且好处很多: ...

  3. 检验二叉树序列化的合理性 Verify Preorder Serialization of a Binary Tree

    2018-07-31 17:47:13 问题描述: 问题求解: 本题要求在不构建二叉树的情况下对先序遍历生成的序列化字符串进行合法性验证,这里有个技巧性较强的验证方法,就是采用当前可用的指针数目进行验 ...

  4. 雷林鹏分享:C# 枚举(Enum)

    C# 枚举(Enum) 枚举是一组命名整型常量.枚举类型是使用 enum 关键字声明的. C# 枚举是值数据类型.换句话说,枚举包含自己的值,且不能继承或传递继承. 声明 enum 变量 声明枚举的一 ...

  5. 新概念 Lesson 5 How are you today

    How is Emma? 艾玛身体还好吗? 短语:very well How's Emma? She's very well, too. Emma is very well today   adv. ...

  6. React 介绍

    ttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind The sm ...

  7. HDU-3729 二分匹配 匈牙利算法

    题目大意:学生给出其成绩区间,但可能出现矛盾情况,找出合理组合使没有说谎的人尽可能多,并按maximum lexicographic规则输出组合. //用学生去和成绩匹配,成绩区间就是学生可以匹配的成 ...

  8. 『Json』常用方法记录

    json模块可以把字典结构改写为string然后保存,并可以反向读取字典 pickle模块则可以持久化任意数据结构 但是即使同样是字典数据结构,两个包也是有差别的, json字典value不支持其他对 ...

  9. 基于binlog的增量备份

    1.1 增量备份简介 增量备份是指在一次全备份或上一次增量备份后,以后每次的备份只需备份与前一次相比增加或者被修改的文件.这就意味着,第一次增量备份的对象是进行全备后所产生的增加和修改的文件:第二次增 ...

  10. 【转】ASP.NET Core API 版本控制

    几天前,我和我的朋友们使用 ASP.NET Core 开发了一个API ,使用的是GET方式,将一些数据返回到客户端 APP.我们在前端进行了分页,意味着我们将所有数据发送给客户端,然后进行一些dat ...