LINK


思路

首先因为式子后面把方案数乘上了

所以其实只用输出所有方案的攻击力总和

然后很显然可以用强化牌就尽量用

因为每次强化至少把下面的牌翻一倍,肯定是更优的

然后就只有两种情况

  • 强化牌数量少于k
  • 强化牌数量大于等于k

根据乘法原理,设\(f_{i,j}\)是选i张强化牌用j张的倍数总和,\(g_{i,j}\)是选i张攻击用j张的倍数总和

\(ans+=f_{k,k}*g_{m-i,m-k}\)

\(ans+=f_{i,k-1}*g_{m-i,1}\)

然后f的计算可以量化大小这个东西,就是先排序

dp出选了i个数,最后一个在j的方案数,这样前面的j各种不可能选出其他数,对于后面的数直接组合数计算就可以了


#include<bits/stdc++.h>

using namespace std;

const int Mod = 998244353;

const int N = 3e3 + 10;

int n, m, k, a[N], b[N], c[N][N];
int sum[N], f[N][N], g[N][N]; int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
} int mul(int a, int b) {
return 1ll * a * b % Mod;
} void init() {
for (int i = 0; i < N; i++) c[i][0] = 1;
for (int i = 1; i < N; i++) {
for (int j = 1; j <= i; j++) {
c[i][j] = add(c[i - 1][j], c[i - 1][j - 1]);
}
}
} int calcf(int a, int b) { // 取a张用b张
if (a < b) return 0;
if (!b) return c[n][a]; //**
int res = 0;
for (int i = 1; i <= n; i++)
res = add(res, mul(f[b][i], c[n - i][a - b]));
return res;
} int calcg(int a, int b) {
if (a < b) return 0;
if (!b) return 0; //**
int res = 0;
for (int i = 1; i <= n; i++)
res = add(res, mul(g[b][i], c[n - i][a - b]));
return res;
} void solve() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) scanf("%d", &b[i]);
sort(a + 1, a + n + 1, [&](const int a, const int b) {return a > b;});
sort(b + 1, b + n + 1, [&](const int a, const int b) {return a > b;});
for (int i = 1; i <= n; i++) {
f[1][i] = a[i];
sum[i] = add(sum[i - 1], a[i]);
}
for (int i = 2; i <= n; i++) {
for (int j = i; j <= n; j++)
f[i][j] = mul(sum[j - 1], a[j]);
for (int j = 1; j <= n; j++)
sum[j] = add(sum[j - 1], f[i][j]);
}
for (int i = 1; i <= n; i++) {
g[1][i] = b[i];
sum[i] = add(sum[i - 1], b[i]);
}
for (int i = 2; i <= n; i++) {
for (int j = i; j <= n; j++) {
g[i][j] = add(mul(b[j], c[j - 1][i - 1]), sum[j - 1]);
}
for (int j = 1; j <= n; j++)
sum[j] = add(sum[j - 1], g[i][j]);
}
int ans = 0;
for (int i = max(0, m - n); i <= min(n, m); i++) {
if (i < k) ans = add(ans, mul(calcf(i, i), calcg(m - i, k - i)));
else ans = add(ans, mul(calcf(i, k - 1), calcg(m - i, 1)));
}
printf("%d\n", ans);
} int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
init();
int T; scanf("%d", &T);
while (T--) solve();
return 0;
}

LOJ2538. 「PKUWC2018」Slay the Spire【组合数学】的更多相关文章

  1. loj2538 「PKUWC2018」Slay the Spire 【dp】

    题目链接 loj2538 题解 比较明显的是,由于强化牌倍数大于\(1\),肯定是能用强化牌尽量用强化牌 如果强化牌大于等于\(k\),就留一个位给攻击牌 所以我们将两种牌分别排序,企图计算\(F(i ...

  2. loj #2538. 「PKUWC2018」Slay the Spire

    $ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...

  3. 【LOJ】#2538. 「PKUWC2018」Slay the Spire

    题解 由于强化卡都是大于1的,我们分析一下就会发现,尽可能多的用强化卡,至少用一张攻击卡,一定是每组卡牌的最优选择 所以我们把攻击卡和强化卡从大到小排序 我们设\(g[i][j]\)表示前i张卡牌里选 ...

  4. 「PKUWC2018」Slay the Spire

    题目链接 题意分析 这个题其实不是期望 就是一共有\(C_{2n}^m\)种情况 每一种情况选择\(k\)张牌 然后求最大攻击值的总和 我们考虑 当前抽出了选出了\(i\)张强化牌 \(m-i\)张攻 ...

  5. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  6. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  7. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  8. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

  9. loj#2537. 「PKUWC2018」Minimax

    题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...

随机推荐

  1. python导包显示No module named XXX问题

    最近用sublime text写python脚本,在导包是一直显示No module named XXX. 问题描述: 首先文件夹的目录结构如下: count.py文件,代码如下: #coding=u ...

  2. Java 如何抛出异常、自定义异常、手动或主动抛出异常

    public static void main(String[] args) { try { throw new Exception("抛出异常"); } catch (Excep ...

  3. C#两种数据类型

    C#的两种类据类型:值类型和引用类型   什么是值类型,什么是引用类型 概念:值类型直接存储其值,而引用类型存储对其值的引用.部署:托管堆上部署了所有引用类型. 引用类型:基类为Objcet 值类型: ...

  4. IDEA设置类、方法注释模板

    类注释模板 File -> Other Setting -> Default Setting打开默认设置 Editor -> File and Code Templates -> ...

  5. 44 CSS 浮动 模态框 定位

    一.浮动 float : 浮动的盒子不占原来的位置,其下方的盒子会上移 父盒子会发生塌陷现象.同一级盒子right浮动,同级左边的盒子需要左浮动,right浮动的盒子才能上来 由于浮动框不在文档的普通 ...

  6. C++中的构造函数,拷贝构造函数,赋值函数

    C++中一般创建对象,拷贝或赋值的方式有构造函数,拷贝构造函数,赋值函数这三种方法.下面就详细比较下三者之间的区别以及它们的具体实现 1.构造函数 构造函数是一种特殊的类成员函数,是当创建一个类的对象 ...

  7. Erlang:Error in process ... with exit value

    =ERROR REPORT==== 10-Apr-2015::16:30:04 ===Error in process <0.218.0> with exit value: {badarg ...

  8. 正向代理到指定泛域名的nginx配置

    resolver 8.8.8.8; #必须配置!!!不然无法代理 server { listen default_server; listen [::]: default_server; server ...

  9. 使用GAN进行异常检测——可以进行网络流量的自学习哇,哥哥,人家是半监督,无监督的话,还是要VAE,SAE。

    实验了效果,下面的还是图像的异常检测居多. https://github.com/LeeDoYup/AnoGAN https://github.com/tkwoo/anogan-keras 看了下,本 ...

  10. LD_PRELOAD的偷梁换柱之能

    作者: net66 原创 本文网址:http://www.cnblogs.com/net66/p/5609026.html 发布日期:2015 年 06月 22日 一.LD_PRELOAD是什么 LD ...