词袋模型bow和词向量模型word2vec
在自然语言处理和文本分析的问题中,词袋(Bag of Words, BOW)和词向量(Word Embedding)是两种最常用的模型。更准确地说,词向量只能表征单个词,如果要表示文本,需要做一些额外的处理。下面就简单聊一下两种模型的应用。
所谓BOW,就是将文本/Query看作是一系列词的集合。由于词很多,所以咱们就用袋子把它们装起来,简称词袋。至于为什么用袋子而不用筐(basket)或者桶(bucket),这咱就不知道了。举个例子:
文本1:苏宁易购/是/国内/著名/的/B2C/电商/之一
这是一个短文本。“/”作为词与词之间的分割。从中我们可以看到这个文本包含“苏宁易购”,“B2C”,“电商”等词。换句话说,该文本的的词袋由“苏宁易购”,“电商”等词构成。就像这样:
但计算机不认识字,只认识数字,那在计算机中怎么表示词袋模型呢?其实很简单,给每个词一个位置/索引就可以了。例如,我们令“苏宁易购”的索引为0,“电商”的索引为1,其他以此类推。则该文本的词袋就变成了:
是的,词袋变成了一串数字的(索引)的集合。这样计算机就能读懂了。如果用程序来描述的话,就会像:Set<int>(0,1,2…)。当然,刚才的例子中像“苏宁易购”等词只出现了一次,如果出现多次,可能就需要支持重复元素的容器了,如Java/C++中的MultiSet。
可是,在实际的应用中(如:文本的相似度计算),用刚才说的容器是非常不方便的(如果要用,需要额外用Map容器来存储一本字典来表征词和索引的映射关系)。因此我们考虑用更简单的数据结构来组织词袋模型。既然刚才说词是用数字(索引)来表示的,那自然我们会想到数组。例如:
Intwords[10000] = {1,20,500,0,……}
索引:{0,1,2,3,……}
词: {苏宁易购,是,国内,B2C,……}
数组的下标表示不同的词,数组中的元素表示词的权重(如:TF,TF-IDF)。更为一般的,词的索引可以用词的HashCode来计算,即:Index(苏宁易购) = HashCode(苏宁易购)。将词散列到数组的某个位置,并且是固定的(理论上会有冲突,需要考虑冲突的问题)。因此,HashCode这个函数起到了字典的作用。转化成了数组,接下来计算余弦相似度啥的就好办多了。这就是词袋模型。
下面讲讲词向量模型。实际上,单个词的词向量不足以表示整个文本,能表示的仅仅是这个词本身。往往,这个词向量是个高维的向量(几万甚至几十万)。先不说它是如何得到的,单说它的应用应该是很广泛的。再举文本相似度的例子,既然词可以用一串数字表示,那么自然可以用余弦相似度或欧式距离计算与之相近的词。这样,词的聚类什么的都可以做了。那长文本怎么办呢?一个简单的办法是把这个文本中包含的词的词向量相加。这样长文本也就表示成了一串数字。可是这种处理方法总让我们觉得怪怪的。看到过有同学做的测试,当文本只有十几个字的时候,这种处理方法还算凑合,字多了,结果就很难看了。至于词向量是怎么获得,咱下回再说。目前word2vec有多种版本可供大家使用。至于像doc2vec,sentence2vec的效果还有待评估。
词袋模型bow和词向量模型word2vec的更多相关文章
- 计算机视觉中的词袋模型(Bow,Bag-of-words)
计算机视觉中的词袋模型(Bow,Bag-of-words) Bag-of-words 读 'xw20084898的专栏'的blogBag-of-words model in computer visi ...
- 第十九节、基于传统图像处理的目标检测与识别(词袋模型BOW+SVM附代码)
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视 ...
- 视觉单词模型、词袋模型BoW
多用于图像检索.分类 3.2.1.4 视觉单词模型 视觉词袋(BoVW,Bag of Visual Words)模型,是“词袋”(BoW,Bag of Words)模型从自然语言处理与分析领域向图像处 ...
- 自然语言处理词向量模型-word2vec
自然语言处理与深度学习: 语言模型: N-gram模型: N-Gram模型:在自然语言里有一个模型叫做n-gram,表示文字或语言中的n个连续的单词组成序列.在进行自然语言分析时,使用n-gram或者 ...
- NLP基础——词集模型(SOW)和词袋模型(BOW)
(1)词集模型(Set Of Words): 单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个. (2)词袋模型(Bag Of Words): 如果一个单词在文档中出现不止一 ...
- 【CV知识学习】【转】beyond Bags of features for rec scenen categories。基于词袋模型改进的自然场景识别方法
原博文地址:http://www.cnblogs.com/nobadfish/articles/5244637.html 原论文名叫Byeond bags of features:Spatial Py ...
- 词袋模型(BOW,bag of words)和词向量模型(Word Embedding)概念介绍
例句: Jane wants to go to Shenzhen. Bob wants to go to Shanghai. 一.词袋模型 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个 ...
- [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...
- 机器学习入门-文本特征-word2vec词向量模型 1.word2vec(进行word2vec映射编码)2.model.wv['sky']输出这个词的向量映射 3.model.wv.index2vec(输出经过映射的词名称)
函数说明: 1. from gensim.model import word2vec 构建模型 word2vec(corpus_token, size=feature_size, min_count ...
随机推荐
- 关于tensorboard启动问题
我在学习过程中遇到了tensorboard无法启动的问题. 按照网上的教程,我无法正常启动tensorboard,全过程没有报错,但是打开tensorboard显示 No dashboards are ...
- android异步处理机制
昨天面试被提问android的异步处理机制有哪些,他说处理new thread还有哪种方式,我说implement runnable,他说不是,比如intentservice. 我说那还有asyncT ...
- IDEA使用笔记(一)——使用前的基本设置
前言:记忆不好,有些东西需要的时候又需要找一找,那就不如让“纸和笔”来帮忙记录一下啦!到时候查找也方便,而且是自己的东西印象更加的深刻,说不定还能帮助到他人多好玩的事情! 软件的下载.安装就不记啦!自 ...
- Segment Advisor
Segment Advisor通过分析和检查AWR中关于segments的使用和增长统计信息,以及采样分析segment中的数据,找出哪些segments有可以回收的空间. Segment Advis ...
- MYSQL-使用mysqldump创建数据库快照
对已经有数据的mysql库创建主从的时候,可以使用mysqldump创建数据库快照 #--master-data选项会自动加上开启复制需要的"change master to"语句 ...
- Java Nashorn--Part 4
Nashorn 和 javax.script 包 Nashorn 并不是第一个在 Java 平台上运行的脚本语言.在Java 6 就提供了 javax.script java 包,它为脚本语言引擎提供 ...
- SQL 教程数据库包括:Oracle, Sybase, SQL Server, DB2, Access 等等,您将学到如何使用 SQL 访问和处理数据系统中的数据
SQL 基础教程 SQL 教程 SQL 简介 SQL 语法 SQL select SQL distinct SQL where SQL AND & OR SQL Order By SQL in ...
- springboot 错误处理
在 java web开发过程中,难免会有一些系统异常或人为产生一些异常.在 RESTful springboot 项目中如何优雅的处理? 分析:在RESTful 风格的springboot 项目中,返 ...
- 程序包org.junit不存在和编码GBK的不可映射字符问题解决
maven项目在打包编译时提示: 解决办法: 将pom中junit依赖中的scope给注释掉 <dependency> <groupId>junit</groupId&g ...
- Error:Cause: org/gradle/api/publication/maven/internal/DefaultMavenFactory Android
首先,要看一下自己的项目使用 “Gradle版本” 接着要看一下项目根目录的build.gradle文件中的“dependencies”的 classpath 'com.github.dcendent ...