题解:洛谷P3745 期末考试(整数三分)

题目传送门

题目大意:给出 \(n\) 个同学期望出成绩的时间限制 \(a_i\) 和 \(m\) 个学科公布成绩的初始时间 \(t_i\) ,1个同学每多等一天就产生 C 的不愉快度。问通过一番操作后最小的不愉快度之和是多少?

操作有两种:

1.让学科 X 的发布时间晚1天,学科 Y 的发布时间早1天,产生A的不愉快度。

2.让学科 Z 的发布时间早1天,产生 B 的不愉快度。

思路:

设 \(t\) 表示规定的所有学科公布成绩的时间期限,\(y\) 表示满足第 \(t\) 天时出所有成绩的最小不愉快度之和。

则 \(y\) 关于 \(t\) 的函数是一个下凹函数(或者说形状类似一个开口向上的抛物线吧)

考虑三分出最低点(三分的部分就是板子了)

考虑怎么算 \(y\) ,由两部分组成:(1)\(t_i<t\) 的所有同学的不愉快度 \(res\)(2)操作的不愉快度

操作的不愉快度有两种,一种是 A 的移大补小,一种是 B 的暴力删。

首先明确一点:不关心大的到底补到了哪个小的,小的最终具体时间也不关心,因为同学的不愉快度只跟上限 \(t\) 有关。下面对操作的不愉快度进行分讨:

(1)若 \(B \leq A\) , 那肯定只使用 B

(2)若 \(A < B\) , 记所有小于 t 的学科的时间可以提供的补过来的空缺为 val1 , 大于 t 的学科超过 t 的总时间为 val2

当 \(val1 \geq val2\),全用 A 操作

当 \(val1 < val2\),进行 val1 次 A 操作,再进行 (val2-val1)次 B 操作

注意三分的边界和退出条件,算 \(res,val1,val2\) 时可以 \(O(N)\) 遍历 \(a_i\) 和 \(t_i\) ,也可以先排序后记个前缀和,三分的时候二分查找一下 分界点 \(t\) 再两个数组中的位置,时间复杂度 \(O(log_3N*log_2N)\)(感觉有点抽象,具体细节看代码吧~),注意特判C很大的情况,不然要开unsigned long long。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define F(i,l,r) for(int i=l;i<=r;++i)
const int N=1e5+5;
const ll M=1e16;
int n,m,A,B,a[N],t[N];
ll C,s1[N],s2[N];
inline ll suan(int x){//限制所有学科天数不超过x
ll w1=upper_bound(t+1,t+m+1,x)-t-1,w2=lower_bound(a+1,a+n+1,x)-a-1,
val1=x*w1-s2[w1],val2=(s2[m]-s2[w1])-(m-w1)*x,
res=(w2*x-s1[w2])*C;
//val1:<x的w1天里有多少空缺
//val2:超过x天的学科里要移动多少天过来(或者说理论上要多少空缺)
if(A<B){
if(val1>=val2) return A*val2+res;
else return A*val1+B*(val2-val1)+res;
}
return val2*B+res;
}
int main(){
scanf("%d%d%lld%d%d",&A,&B,&C,&n,&m);
F(i,1,n) scanf("%d",&a[i]); sort(a+1,a+n+1); F(i,1,n) s1[i]=s1[i-1]+a[i];
F(i,1,m) scanf("%d",&t[i]); sort(t+1,t+m+1); F(i,1,m) s2[i]=s2[i-1]+t[i];
if(C==1e16) return printf("%lld",suan(a[1])),0;//特判C很大的情况,不然要开unsigned long long
int l=0,r=t[m]+1,mid1,mid2;
while(l+2<r){
mid1=(2*l+r)/3,mid2=(l+2*r)/3;
if(suan(mid1)>=suan(mid2)) l=mid1;
else r=mid2;
}
printf("%lld",min({suan(l),suan(r),suan(l+1)}));
return 0;
}

题解:洛谷P3745 期末考试(整数三分)的更多相关文章

  1. 【Luogu】P3745期末考试(三分)

    题目链接 我是怎么把“期末考试”在本地写成“假期计划”的 qwq???? 本题把学生和卷子都排个序,按出成绩最晚时间三分. 三分之后可以O(n)的时间统计答案,因为修改卷子出成绩的时间可以贪心计划. ...

  2. 【题解】期末考试 六省联考 2017 洛谷 P3745 BZOJ 4868 贪心 三分

    题目传送门:这里是萌萌哒传送门(>,<) 啊♀,据说这题有个完全贪心的做法,但是要维护太多东西好麻烦的(>,<),于是就来口胡一发三分的做法. 思路很简单,假设我指定了一个x, ...

  3. 题解 洛谷P3745 【[六省联考2017]期末考试】

    这题有点绕,我写了\(2h\)终于搞明白了. 主要思路:枚举最晚公布成绩的时间\(maxt\),然后将所有公布时间大于\(maxt\)的课程都严格降为\(maxt\)即可. 在此之前,还要搞清楚一个概 ...

  4. 洛谷模拟NOIP考试反思

    洛谷模拟NOIP考试反思 想法 考了这么简单的试qwq然而依然emmmmmm成绩不好 虽然本次难度应该是大于正常PJ难度的但还是很不理想,离预估分数差很多qwq 于是就有了本反思嘤嘤嘤 比赛链接 原比 ...

  5. 洛谷 P3745 [六省联考2017]期末考试

    题目描述 有 nnn 位同学,每位同学都参加了全部的 mmm 门课程的期末考试,都在焦急的等待成绩的公布. 第 iii 位同学希望在第 tit_iti​ 天或之前得知所有课程的成绩.如果在第 tit_ ...

  6. 洛谷P3745 [六省联考2017]期末考试

    传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include&l ...

  7. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  8. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  9. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  10. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

随机推荐

  1. springboot如何集成Prometheus如何暴露Histogram来获取P99等监控指标

    背景 springboot如何集成Prometheus我这里不做详细描述,要想了解集成过程,可以参考一下博客: Spring Boot 使用 Micrometer 集成 Prometheus 监控 J ...

  2. brpc linux 下编译构建

    brpc 在 linux 下编译构建,比在 mac 下还要更复杂些,mac 下可以走官方说明编译成功,过程中也需要进行一些配置调整. 在 linux 通过 bazel 最终实现了 brpc 编译通过. ...

  3. CASIO fx-991CN X 使用

    复数转换 \(a+b \, {\mathrm i} \leftrightarrow r \angle \theta\) 进入复数运算模式 菜单 2 输入待转换数 OPTN ▼,选择目标格式. = 可通 ...

  4. Kubernetes-1:初识k8s 什么是kubernetes

    Kubernetes简介 为什么要用k8s? 容器间(Docker)在夸主机通信时,只能通过在主机做端口映射(DNAT)来实现,这种方式对于很多集群应用来说及其不方便.会影响整体处理速度,所以引入k8 ...

  5. Figma 学习笔记 – Component

    参考 Guide to Components in Figma Figma Tutorial: Components - The Basics (Youtube) 定义与用途 Figma 的 Comp ...

  6. EF Core – QueryFilter & Interception

    主要参考 Global Query Filters Interceptors QueryFilter QueryFilter 就是默认过滤, 非常适合用来做 Soft Delete builder.H ...

  7. 教你一招,测试人员如何通过AI提高工作效率!

    伴随着AI技术的兴起,像OpenAI推出的ChatGPT.Microsoft发布的Microsoft 365 Copilot.阿里的通义千问.百度的文心一言.华为的盘古大模型等.很多测试人员开始担心, ...

  8. SQL注入演示

    SQL注入演示 创建一个简易的登录系统/** tb_user  用户表 * 用户登录系统(需在数据库中创建tb_user表 ) */ @Test public void testUserLogin() ...

  9. .NET 7+Angular 4 轻量级新零售进销存系统

    前言 给大家推荐一个专为新零售快消行业打造了一套高效的进销存管理系统. 系统不仅具备强大的库存管理功能,还集成了高性能的轻量级 POS 解决方案,确保页面加载速度极快,提供良好的用户体验. 项目介绍 ...

  10. 微信小程序上拉加载

    下面是一个示例,在个人使用的过程中按自己需求进行更改 创建一个DataController控制器 php artisan make:controller DataController 创建一个Data ...