SciTech-BigDataAIML- Python Data Science Handbook 以及 HTML源码 转Markdown源码 的办法:
以下文为例:
- Copy HTML Source code from the web page.
- Transform the HTML code to Markdown code:
https://codebeautify.org/html-to-markdown - Correcting the relative links:
import re
# Note! the "r" char before is required.
pattern = re.compile(r"\((0[0-9]\.[^)]*\.html)\)", re.M|re.I)
# Note! the "r" char before is required.
pt.sub(r"(https://jakevdp.github.io/PythonDataScienceHandbook/\1)", s)
- Use the Corrected Markdown source code as you want.
https://jakevdp.github.io/PythonDataScienceHandbook/index.html
This website contains the full text of the Python Data Science Handbook by Jake VanderPlas; the content is available on GitHub in the form of Jupyter notebooks.
The text is released under the CC-BY-NC-ND license, and code is released under the MIT license.
If you find this content useful, please consider supporting the work by buying the book!
Table of Contents¶
Preface¶
1. IPython: Beyond Normal Python¶
- Help and Documentation in IPython
- Keyboard Shortcuts in the IPython Shell
- IPython Magic Commands
- Input and Output History
- IPython and Shell Commands
- Errors and Debugging
- Profiling and Timing Code
- More IPython Resources
2. Introduction to NumPy¶
- Understanding Data Types in Python
- The Basics of NumPy Arrays
- Computation on NumPy Arrays: Universal Functions
- Aggregations: Min, Max, and Everything In Between
- Computation on Arrays: Broadcasting
- Comparisons, Masks, and Boolean Logic
- Fancy Indexing
- Sorting Arrays
- Structured Data: NumPy's Structured Arrays
3. Data Manipulation with Pandas¶
- Introducing Pandas Objects
- Data Indexing and Selection
- Operating on Data in Pandas
- Handling Missing Data
- Hierarchical Indexing
- Combining Datasets: Concat and Append
- Combining Datasets: Merge and Join
- Aggregation and Grouping
- Pivot Tables
- Vectorized String Operations
- Working with Time Series
- High-Performance Pandas: eval() and query()
- Further Resources
4. Visualization with Matplotlib¶
- Simple Line Plots
- Simple Scatter Plots
- Visualizing Errors
- Density and Contour Plots
- Histograms, Binnings, and Density
- Customizing Plot Legends
- Customizing Colorbars
- Multiple Subplots
- Text and Annotation
- Customizing Ticks
- Customizing Matplotlib: Configurations and Stylesheets
- Three-Dimensional Plotting in Matplotlib
- Geographic Data with Basemap
- Visualization with Seaborn
- Further Resources
5. Machine Learning¶
- What Is Machine Learning?
- Introducing Scikit-Learn
- Hyperparameters and Model Validation
- Feature Engineering
- In Depth: Naive Bayes Classification
- In Depth: Linear Regression
- In-Depth: Support Vector Machines
- In-Depth: Decision Trees and Random Forests
- In Depth: Principal Component Analysis
- In-Depth: Manifold Learning
- In Depth: k-Means Clustering
- In Depth: Gaussian Mixture Models
- In-Depth: Kernel Density Estimation
- Application: A Face Detection Pipeline
- Further Machine Learning Resources
Appendix: Figure Code¶
SciTech-BigDataAIML- Python Data Science Handbook 以及 HTML源码 转Markdown源码 的办法:的更多相关文章
- Python Data Science Toolbox Part 1 Learning 1 - User-defined functions
User-defined functions from:https://campus.datacamp.com/courses/python-data-science-toolbox-part-1/w ...
- python data science handbook1
import numpy as np import matplotlib.pyplot as plt import seaborn; seaborn.set() rand = np.random.Ra ...
- 51 Free Data Science Books
51 Free Data Science Books A great collection of free data science books covering a wide range of to ...
- Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习
http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...
- 学习笔记之Intermediate Python for Data Science | DataCamp
Intermediate Python for Data Science | DataCamp https://www.datacamp.com/courses/intermediate-python ...
- Intermediate Python for Data Science learning 2 - Histograms
Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...
- A Complete Tutorial to Learn Data Science with Python from Scratch
A Complete Tutorial to Learn Data Science with Python from Scratch Introduction It happened few year ...
- 40 Questions to test your skill in Python for Data Science
Comes from: https://www.analyticsvidhya.com/blog/2017/05/questions-python-for-data-science/ Python i ...
- 【转】Comprehensive learning path – Data Science in Python
Journey from a Python noob to a Kaggler on Python So, you want to become a data scientist or may be ...
- What is the Best Python IDE for Data Science?
Created by Guido van Rossum, Python was first released back in 1991. The interpreted high-level prog ...
随机推荐
- Vue(八)——表单数据双向绑定
表单双向绑定: 绑定的数据能更新表单的值 表单的值能更新所绑定的数据 通过v-model指令来实现双向绑定 v-model--监听用户的输入事件来更新数据 规则: 初始化--v-model 会忽略所有 ...
- BURP APP HTTPS抓包xposed+justtrustme工具篇
APP HTTPS抓包 当APP是HTTPS时,则单纯的使用Burpsuite无法抓取数据包,原因是APP启用了SSL Pinning(又叫做"SSL证书绑定"). 1.下载夜神模 ...
- Java编程--String类和基本数据类型的相互转换
基本数据类型:byte.short.int.long.char.float.double.boolean 基本数据类型->String:利用String类提供的ValueOf(基本类型)方法转换 ...
- TVM:TensorIR
TensorIR是一种用于深度学习的特定领域语言,主要有两个目的. 在各种硬件后端进行程序变换和优化的实现 用于自动张量化程序优化的抽象 import tvm from tvm.script.pars ...
- cf 870div2 abcd题解
A题,先假设一个res从0开始,判断说谎人的个数用ans表示,如果res==ans则假设成立 #include<iostream> using namespace std; typedef ...
- java原生链利用
java原生链利用 在上一个文章中我们利用Java原生链进行shiro的无依赖利用; 针对在没有第三方库的时候,我们该如何进行java反序列化; 确实存在一条不依赖第三方库的java反序列化利用链;但 ...
- Kubernetes中Service学习笔记
我们知道 Pod 的生命周期是有限的.可以用 ReplicaSet 和Deployment 来动态的创建和销毁 Pod,每个 Pod 都有自己的 IP 地址,但是如果 Pod 重建了的话那么他的 IP ...
- veRL代码阅读-1.论文原理
总览 主要以PPO为基础来学习VeRL的整体训练流程. 在PPO里主要有4个模型: Actor Model: 要训练的目标模型. Critic Model: 用于在RL训练中评估总收益, 在训练过程中 ...
- 第一次通过 SSH key 免密连接 GitHub 的完整过程
原文:https://ichochy.com/posts/blog/20221107.html 通过密码连接GitHub总是要输入密码,麻烦,现在使用 SSH key 可以轻松实现免密验证. 创建 S ...
- HyperWorks基于 Shrink Warp Mesh 的零部件网格剖分
Step01:读入模型 Exercise_4b.hm. Step02:在名为 loose_gap 的 component 中建立 Loose Shrink Warp Mesh. (1) 点击 Shad ...