结点容量..拆点然后随便写

---------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
#define chk(x, y) (x >= 0 && x < R && y >= 0 && y < C)
 
const int maxn = 10000;
const int maxm = 2900;
 
int h[maxn], cnt[maxn];
int X[maxm][maxm], Y[maxm][maxm];
int R, C, D, V, S, T, N;
char s[maxm];
 
struct edge {
int to, cap;
edge *next, *rev;
} E[1000000], *pt = E, *head[maxn], *p[maxn], *cur[maxn];
 
inline void Add(int u, int v, int w) {
pt->to = v; pt->cap = w; pt->next = head[u]; head[u] = pt++;
}
 
inline void AddEdge(int u, int v, int w) {
Add(u, v, w); Add(v, u, 0);
head[u]->rev = head[v];
head[v]->rev = head[u];
}
 
void Init() {
V = N = 0;
scanf("%d%d%d", &R, &C, &D);
memset(X, -1, sizeof X);
for(int i = 0; i < R; i++) {
scanf("%s", s);
for(int j = 0; j < C; j++) if(s[j] > '0') {
X[i][j] = V++;
Y[i][j] = V++;
AddEdge(X[i][j], Y[i][j], s[j] - '0');
}
}
S = V++; T = V++;
for(int i = 0; i < R; i++)
for(int j = 0; j < C; j++) if(~X[i][j])
for(int d = 1; d <= D; d++)
for(int k = 0; k <= d; k++) {
int x = i + k, y = j + d - k;
if(chk(x, y) && ~X[x][y]) AddEdge(Y[i][j], X[x][y], maxn);
x = i - k, y = j - d + k;
if(chk(x, y) && ~X[x][y]) AddEdge(Y[i][j], X[x][y], maxn);
x = i + k, y = j - d + k;
if(chk(x, y) && ~X[x][y]) AddEdge(Y[i][j], X[x][y], maxn);
x = i - k, y = j + d - k;
if(chk(x, y) && ~X[x][y]) AddEdge(Y[i][j], X[x][y], maxn);
}
for(int i = 0; i < R; i++) {
scanf("%s", s);
for(int j = 0; j < C; j++) {
if(~X[i][j] && (i < D || j < D || i + D >= R || j + D >= C)) AddEdge(Y[i][j], T, maxn);
if(s[j] != '.') AddEdge(S, X[i][j], 1), N++;
}
}
}
 
void Solve() {
memset(cnt, 0, sizeof cnt);
memset(h, 0, sizeof h);
cnt[0] = V;
for(int i = 0; i < V; i++) cur[i] = head[i];
int Flow = 0; edge* e;
for(int x = S, A = maxn; h[S] < V; ) {
for(e = cur[x]; e; e = e->next)
if(h[e->to] + 1 == h[x] && e->cap) break;
if(e) {
p[e->to] = cur[x] = e;
A = min(A, e->cap);
if((x = e->to) == T) {
for(; x != S; x = p[x]->rev->to) {
p[x]->cap -= A;
p[x]->rev->cap += A;
}
Flow += A;
A = maxn;
}
} else {
if(!--cnt[h[x]]) break;
h[x] = V;
for(e = head[x]; e; e = e->next) if(h[e->to] + 1 < h[x] && e->cap) {
h[x] = h[e->to] + 1;
cur[x] = e;
}
cnt[h[x]]++;
if(x != S) x = p[x]->rev->to;
}
}
printf("%d\n", N - Flow);
}
 
int main() {
Init();
Solve();
return 0;
}

---------------------------------------------------------------

1066: [SCOI2007]蜥蜴

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 2516  Solved: 1240
[Submit][Status][Discuss]

Description

在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外。 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石柱上。石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不变),如果该石柱原来高度为1,则蜥蜴离开后消失。以后其他蜥蜴不能落脚。任何时刻不能有两只蜥蜴在同一个石柱上。

Input

输入第一行为三个整数r,c,d,即地图的规模与最大跳跃距离。以下r行为石竹的初始状态,0表示没有石柱,1~3表示石柱的初始高度。以下r行为蜥蜴位置,“L”表示蜥蜴,“.”表示没有蜥蜴。

Output

输出仅一行,包含一个整数,即无法逃离的蜥蜴总数的最小值。

Sample Input

5 8 2
00000000
02000000
00321100
02000000
00000000
........
........
..LLLL..
........
........

Sample Output

1

HINT

100%的数据满足:1<=r, c<=20, 1<=d<=4

Source

BZOJ 1066: [SCOI2007]蜥蜴( 最大流 )的更多相关文章

  1. poj 2711 Leapin' Lizards && BZOJ 1066: [SCOI2007]蜥蜴 最大流

    题目链接:http://poj.org/problem?id=2711 题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1066 Your p ...

  2. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  3. [BZOJ 1066] [SCOI2007] 蜥蜴 【最大流】

    题目链接:BZOJ - 1066 题目分析 题目限制了高度为 x 的石柱最多可以有 x 只蜥蜴从上面跳起,那么就可以用网络流中的边的容量来限制.我们把每个石柱看作一个点,每个点拆成 i1, i2,从 ...

  4. BZOJ 1066 [SCOI2007]蜥蜴(最大流)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1066 [题目大意] 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些 ...

  5. bzoj 1066: [SCOI2007] 蜥蜴

    这道题还是挺好想的,但我一开始还是想错了…… 把每个石柱拆成两个点,一个入度,一个出度,两个点连一条容量为高度的边,这样就可以限制从此石柱上经过的蜥蜴的数量.关于蜥蜴是否单独成点,我是单独当成了一个点 ...

  6. bzoj 1066 : [SCOI2007]蜥蜴 网络流

    题目链接 给一个n*m的图, 里面每一个点代表一个石柱, 石柱有一个高度. 初始时有些石柱上面有蜥蜴, 蜥蜴可以跳到距离他曼哈顿距离小于等于d的任意一个石柱上,跳完后, 他原来所在的石柱高度会减一, ...

  7. 1066: [SCOI2007]蜥蜴

    1066: [SCOI2007]蜥蜴 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3545  Solved: 1771[Submit][Status] ...

  8. [SCOI2007] 蜥蜴 (最大流)

    [SCOI2007] 蜥蜴 题目背景 07四川省选 题目描述 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1 ...

  9. P2472 [SCOI2007]蜥蜴 (最大流)

    题目 P2472 [SCOI2007]蜥蜴 解析 这个题思路比较清晰,本(qi)来(shi)以(jiu)为(shi)无脑建图跑最大流,结果挂了,整了一个小时后重新建图才过的. 建立一个超级源点和一个超 ...

随机推荐

  1. hdu 2054 A == B ? (java)

    问题: 考虑问题不周到.没有考虑到可能是小数并且存在 1.0=1.01=1的情况. 本题使用了BigDecimal类,此类适用于高精度的数此时攻克了小数和01=1的问题, 该类比較方式中n.equal ...

  2. Mysql 计算时间间隔函数

    #计算两个时间的间隔 #计算间隔天数 select TIMESTAMPDIFF(day,'2014-06-01',date(now())) #计算间隔月数 select TIMESTAMPDIFF(m ...

  3. jQuery源码笔记——数据缓存

    数据缓存是为了解决内存泄露,他的原理是,当我们将数据存储到一个对象上面,实际上是将所有的数据存到一个单独的数据对象里,而这个对象只提供一个接口,这个接口可以访问自己存在数据对象里自己的数据. 这是一个 ...

  4. SqlServer之存储过程

    存储过程最主要的特色:是当写完一个存储过程后即被翻译成可执行码存储在系统表 内,当作是数据库的对象之一,一般用户只要执行存储过程,并且提供存储过程所需的参数就可以得到所要的结果而不必再去编辑 T-SQ ...

  5. char* 和 wchar_t* 如何互相转换

    char* 和 wchar_t* 如何互相转换 C函数可以用 wcstombs - 将宽字符转换成多字符 WCHAR ->  CHAR      mbstowcs - 把多字符把转换成宽字符 C ...

  6. 定时器——Cocos2d-x学习历程(十一)

    1.定时器 利用场景.层和精灵等游戏元素,我们可以构建游戏的框架,但是此时的游戏仍然是静止不动的.在一切游戏中,游戏的状态都会随着时间的流逝而改变,同时我们还需要定时进行一些逻辑判断,例如鱼和子弹的碰 ...

  7. Php5.3的lambda函数以及closure(闭包)

    从php5.3以后,php也可以使用lambda function(可能你会觉得是匿名函数,的确是但不仅仅是)来写类似javascript风格的代码: $myFunc = function() { e ...

  8. jquery结合highcharts插件显示实时数据动态曲线图

    效果如图所示: js代码如下: $(document).ready(function() { Highcharts.setOptions({ global: { useUTC: false }, co ...

  9. 解决apache启动问题:httpd: Could not reliably determine the server's fully

    httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1 for Se ...

  10. Oracle EBS-SQL (BOM-4):检查期间新增编码总数.sql

    selectFU.description                                    创建者,msi.CREATION_DATE                        ...