Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1935  Solved: 1053

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

期望DP

n<=15,可以用到状态压缩

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int pw[mxn];
int need[mxn];
double sc[mxn];
double p[mxn],f[mxn][<<];
int k,n;
int main(){
int i,j,x;
scanf("%d%d",&k,&n);
pw[]=;
for(i=;i<=;i++)pw[i]=pw[i-]*;
for(i=;i<=n;i++){
scanf("%lf",&sc[i]);
while(scanf("%d",&x) && x){
need[i]|=pw[x];
}
}
int ed=(<<n)-;
for(i=k;i;i--){//次数
for(j=;j<=ed;j++){//状态
for(x=;x<=n;x++){//种类
if((j&need[x])==need[x]){
f[i][j]+=max(f[i+][j],f[i+][j|pw[x]]+sc[x]);
}
else f[i][j]+=f[i+][j];
}
f[i][j]/=(double)n;
}
}
printf("%.6f\n",f[][]);
return ;
}

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1935  Solved: 1053
[Submit][Status][Discuss]

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

Bzoj1076 [SCOI2008]奖励关的更多相关文章

  1. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  2. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  3. bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Statu ...

  4. [BZOJ1076][SCOI2008]奖励关解题报告|状压DP

    你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...

  5. BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  6. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  7. BZOJ1076 [SCOI2008]奖励关 概率 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1076 题意概括 有n个东西,k次扔出来.每次等概率扔出其中一个. 你可以拿这个东西,但是有条件,得 ...

  8. 【题解】 bzoj1076: [SCOI2008]奖励关 (装压+期望dp)

    题面戳我 Solution 并不会做,看了下题解大概了解了.期望这个东西好难搞啊qwq 我们定义\(dp[i][j]\)表示第\(i\)步,拿到宝物前的状态为\(j\). 正着来会有很多不合法的情况, ...

  9. bzoj千题计划206:bzoj1076: [SCOI2008]奖励关

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 很容易想到方程 dp[i][j]表示抛出了i个宝物,已选宝物状态为j的期望最大得分 初始化dp ...

随机推荐

  1. asp.net获取数据库的连接字符串

    1.添加引用 using System.Configuration; 2.代码 string strConnectionString=ConfigurationManager.AppSettings[ ...

  2. Effective Java笔记一 创建和销毁对象

    Effective Java笔记一 创建和销毁对象 第1条 考虑用静态工厂方法代替构造器 第2条 遇到多个构造器参数时要考虑用构建器 第3条 用私有构造器或者枚举类型强化Singleton属性 第4条 ...

  3. Node.js学习——基本模块之fs

    基本模块之fs 异步读文件 异步读取一个文本文件的代码如下: 'use strict'; var fs = require('fs'); fs.readFile('sample.txt', 'utf- ...

  4. ffmpeg 安装,转视频格式为m3u8,压缩视频

    # ffmpegffmpeg 安装,转视频格式为m3u8,压缩视频 ## ffmpeg 安装直接安装: apt-get install ffmpeg 运行 `ffmpeg` 看是否出现版本号以判断是否 ...

  5. 树莓派3B初始化后一些必须的设置

    接上一篇,SSH已经登录成功(http://www.cnblogs.com/crosys/p/6220108.html) 1.树莓派系统的设置 1.1扩展系统空间 因为内存卡还有很多空间没有分配,第一 ...

  6. Jdk与Tomcat配置与安装

    一.jdk的安装与配置 先下载Tomcat与jdk的压缩包:在usr/local/src目录下下载,下载方法:wget+链接 (tar.gz) 解压tomcat与jdk的压缩包: tar –zvxf ...

  7. Apache主配置文件httpd.conf 详解

    Apache的主配置文件:/etc/httpd/conf/httpd.conf 默认站点主目录:/var/www/html/ Apache服务器的配置信息全部存储在主配置文件/etc/httpd/co ...

  8. 数据结构(c语言)之学生信息管理系统

    程序思维导图 代码表示(代码参考:长春大学-牛言涛老师) 如有错误请指出欢迎交流 #include<stdio.h> #include<malloc.h>//动态存储分配函数头 ...

  9. User mode Linux

    一.简介 用户模式Linux(User ModeLinux,UML)不同于其他Linux虚拟化项目,UML尽量将它自己作为一个普通的程序.从Linux2.6.9版本起,用户模式Linux(User m ...

  10. [转]How to override HandleUnauthorizedRequest in ASP.NET Core

    本文转自:http://quabr.com/40446028/how-to-override-handleunauthorizedrequest-in-asp-net-core I'm migrati ...