Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1935  Solved: 1053

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

期望DP

n<=15,可以用到状态压缩

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int pw[mxn];
int need[mxn];
double sc[mxn];
double p[mxn],f[mxn][<<];
int k,n;
int main(){
int i,j,x;
scanf("%d%d",&k,&n);
pw[]=;
for(i=;i<=;i++)pw[i]=pw[i-]*;
for(i=;i<=n;i++){
scanf("%lf",&sc[i]);
while(scanf("%d",&x) && x){
need[i]|=pw[x];
}
}
int ed=(<<n)-;
for(i=k;i;i--){//次数
for(j=;j<=ed;j++){//状态
for(x=;x<=n;x++){//种类
if((j&need[x])==need[x]){
f[i][j]+=max(f[i+][j],f[i+][j|pw[x]]+sc[x]);
}
else f[i][j]+=f[i+][j];
}
f[i][j]/=(double)n;
}
}
printf("%.6f\n",f[][]);
return ;
}

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1935  Solved: 1053
[Submit][Status][Discuss]

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2
1 0
2 0

Sample Output

1.500000

HINT

【数据规模】

1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

Bzoj1076 [SCOI2008]奖励关的更多相关文章

  1. BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Sta ...

  2. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  3. bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Statu ...

  4. [BZOJ1076][SCOI2008]奖励关解题报告|状压DP

    你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...

  5. BZOJ1076: [SCOI2008]奖励关【状压DP+期望DP】

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  6. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  7. BZOJ1076 [SCOI2008]奖励关 概率 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1076 题意概括 有n个东西,k次扔出来.每次等概率扔出其中一个. 你可以拿这个东西,但是有条件,得 ...

  8. 【题解】 bzoj1076: [SCOI2008]奖励关 (装压+期望dp)

    题面戳我 Solution 并不会做,看了下题解大概了解了.期望这个东西好难搞啊qwq 我们定义\(dp[i][j]\)表示第\(i\)步,拿到宝物前的状态为\(j\). 正着来会有很多不合法的情况, ...

  9. bzoj千题计划206:bzoj1076: [SCOI2008]奖励关

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 很容易想到方程 dp[i][j]表示抛出了i个宝物,已选宝物状态为j的期望最大得分 初始化dp ...

随机推荐

  1. java接口调用——webservice就是一个RPC而已

    很多新手一听到接口就蒙逼,不知道接口是什么!其实接口就是RPC,通过远程访问别的程序提供的方法,然后获得该方法执行的接口,而不需要在本地执行该方法.就是本地方法调用的升级版而已,我明天会上一篇如何通过 ...

  2. js几种生成随机颜色方法

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  3. DOM对象与jQuery对象的相互转换

    DOM  对象可以使用 js       中的方法,  不能使用jQuery中的方法:jQuery对象只能使用jQuery中的方法, 不能使用js中的方法:jQuery对象是通过jQuery包装DOM ...

  4. JavaScript学习笔记4之 ByClass&json

    一.通过class获取标签 var out=document.getElementsByClassName(‘out’);IE 6 7 8 不支持 getElementsName 是否有办法既能通过c ...

  5. SAP CRM 7.0中的BOL(Business Object Layer)

    业务对象层(BOL)和通用交互层(GenIL)属于业务层. 业务对象层:   在CRM WebClient会话运行期间,业务对象层存储业务对象的数据以及它们属性和关系的定义. 通用交互层 通用交互层将 ...

  6. Scala For Java的一些参考

          变量 String yourPast = "Good Java Programmer"; val yourPast : String = "Good Java ...

  7. 19-typedef

    本文目录 一.typedef作用简介 二.typedef与指针 三.typedef与结构体 三.typedef与指向结构体的指针 四.typedef与枚举类型 五.typedef与指向函数的指针 六. ...

  8. PriorityQueue和Queue的一种变体的实现

    队列和优先队列是我们十分熟悉的数据结构.提供了所谓的“先进先出”功能,优先队列则按照某种规则“先进先出”.但是他们都没有提供:“固定大小的队列”和“固定大小的优先队列”的功能. 比如我们要实现:记录按 ...

  9. Markdown 新手指南

    Markdown 新手指南   「简书」作为一款「写作软件」在诞生之初就支持了 Markdown,Markdown 是一种「电子邮件」风格的「标记语言」,我们强烈推荐所有写作者学习和掌握该语言.为什么 ...

  10. linux hosts文件详+mac主机名被莫名其妙修改

    1.名词解析 主机名: 无论是在局域网还是在INTERNET上,每台主机都有一个IP地址,用来区分当前是那一台机器(其实底层是使用机器的物理地址),也就是说IP地址就是一个主机的门牌号,唯一的标示这一 ...