ExaWizards 2019
AB:div 3 AB???
C:div 1 C???场内自闭的直接去看D。事实上是个傻逼题,注意到物品相对顺序不变,二分边界即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[N],tot;
char s[N],b[N];
bool check(int k,int op)
{
for (int i=1;i<=m;i++)
if (b[i]==s[k])
{
if (a[i]==0) k--;
else k++;
if (k==0)
{
if (op==0) return 1;
else return 0;
}
if (k==n+1)
{
if (op==1) return 1;
else return 0;
}
}
return 0;
}
signed main()
{
tot=n=read(),m=read();
scanf("%s",s+1);
for (int i=1;i<=m;i++)
{
b[i]=getc();a[i]=getc()=='R';
}
int l=1,r=n,ans=0;
while (l<=r)
{
int mid=l+r>>1;
if (check(mid,0)) ans=mid,l=mid+1;
else r=mid-1;
}
tot-=ans;
l=1,r=n;ans=n+1;
while (l<=r)
{
int mid=l+r>>1;
if (check(mid,1)) ans=mid,r=mid-1;
else l=mid+1;
}
tot-=n+1-ans;
cout<<tot;
return 0;
//NOTICE LONG LONG!!!!!
}
D:显然对小模数取模后,大模数不会再产生影响。于是将模数从大到小排序,设f[i][j]为考虑了前i大模数后当前值是j的概率,转移考虑第i个模数是否在前缀单调栈中,若在则转移对其取模,在栈中相当于其要在比它小的所有数的前面,概率显然为1/(n-i+1)。场上莫名其妙的认为这个概率是1/(n-i+1)!,然后就自闭了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 210
#define M 100010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[N],f[N][M],fac[N],inv[N];
signed main()
{
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
n=read(),m=read();
for (int i=1;i<=n;i++) a[i]=read();
sort(a+1,a+n+1);reverse(a+1,a+n+1);
fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
f[0][m]=1;
for (int i=1;i<=n;i++)
{
for (int j=0;j<=m;j++)
{
f[i][j]=(f[i][j]+1ll*f[i-1][j]*(P+1-inv[n-i+1]))%P;
f[i][j%a[i]]=(f[i][j%a[i]]+1ll*f[i-1][j]*inv[n-i+1])%P;
}
}
int ans=0;
for (int j=0;j<=m;j++) ans=(ans+1ll*f[n][j]*fac[n]%P*(j%a[n]))%P;
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}
E:最后5分钟才看这个题,然后发现是个一眼题。考虑黑白球哪个先被拿完,不妨设是白球,然后见注释。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000007
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,f[N],fac[N],inv[N];
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int Inv(int a){return ksm(a,P-2);}
int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
freopen("e.in","r",stdin);
freopen("e.out","w",stdout);
n=read(),m=read();
fac[0]=fac[1]=1;for (int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=2;i<=n+m;i++) inv[i]=1ll*inv[i-1]*inv[i]%P;
for (int i=m;i<n+m;i++)
{
int p=1ll*C(i-1,m-1)*Inv(ksm(2,i))%P;
f[1]=(f[1]+1ll*(i-m)*Inv(i-1)%P*p)%P;
f[i]=(f[i]+P-1ll*(i-m)*Inv(i-1)%P*p%P)%P;
f[i+1]=(f[i+1]+p)%P;
}
for (int i=n;i<n+m;i++)
{
int p=1ll*C(i-1,n-1)*Inv(ksm(2,i))%P;
f[1]=(f[1]+1ll*(n-1)*Inv(i-1)%P*p)%P;
f[i]=(f[i]+P-1ll*(n-1)*Inv(i-1)%P*p%P)%P;
f[i]=(f[i]+p)%P;
f[i+1]=(f[i+1]+P-p)%P;
}
//白球是在第i次被拿完的 之前黑白球都存在 则每次拿黑白球概率均等 其概率为C(i-1,m-1)/2^i
//考虑该情况下第j次拿黑球的概率 显然第i次不可能
//对j<i和j>i分别考虑
//j<i时,概率为(i-m)/(i-1)
//j>i时,概率为1
//若白球是最后一次被拿完的 再考虑黑球是什么时候被拿完的
//类似
for (int i=1;i<=n+m;i++) f[i]=(f[i]+f[i-1])%P;
for (int i=1;i<=n+m;i++) printf("%d\n",f[i]);
return 0;
//NOTICE LONG LONG!!!!!
}
F:咕
ExaWizards 2019的更多相关文章
- 【AtCoder】ExaWizards 2019
ExaWizards 2019 C - Snuke the Wizard 发现符文的相对位置不变,直接二分某个位置是否到达最左或最右来计算 #include <bits/stdc++.h> ...
- AtCoder ExaWizards 2019 简要题解
AtCoder ExaWizards 2019 简要题解 Tags:题解 link:https://atcoder.jp/contests/exawizards2019 很水的一场ARC啊,随随便便就 ...
- ExaWizards 2019 English D - Modulo Operations(DP)
Time Limit: 2 sec / Memory Limit: 1024 MB Score : 600600 points Problem Statement Snuke has a blackb ...
- AtCoder ExaWizards 2019 D Modulo Operations
题意 给出一个长度为\(n\)的数列和数字\(X\),对于数列的每一种排列,其权值\(X\)依次对排列中的数取模,求出\(n!\)种情况最后剩下的数的权值和 分析 如果大的数字排在小的数字后面,那么大 ...
- Solution -「ExaWizards 2019 C」Snuke and Wizards
\(\mathcal{Description}\) Link. 给定一个长度为 \(n\) 的字符串 \(s\),每个字符上初始有一张卡片.\(q\) 次操作,每次指定 \(s\) 中字符为 ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
- AtCoder 神题汇总
记录平时打 AtCoder 比赛时遇到的一些神题. Tenka1 Programmer Contest 2019 D Three Colors 题目大意 有 $n$ 个正整数 $a_1, a_2,\d ...
- AtCoder整理(持续更新中……)
做了那么久的atcoder觉得自己的题解发的很乱 给有想和我一起交流atcoder题目(或者指出我做法的很菜)(或者指责我为什么整场比赛只会抄题解)的同学一个索引的机会??? 于是写了个爬虫爬了下 A ...
- 2019年台积电进军AR芯片,将用于下一代iPhone
近日,有报道表示台积电10nm 芯片可怜的收益率可能会对 2017 年多款高端移动设备的推出产生较大的影响,其中自然包括下一代 iPhone 和 iPad 机型.不过,台积电正式驳斥了这一说法,表明1 ...
随机推荐
- NetCore实践篇:分布式监控客户端ZipkinTracer从入门到放弃之路
前言 本文紧接上篇.Net架构篇:思考如何设计一款实用的分布式监控系统?,上篇仅仅是个思考篇,跟本文没有太大的关系.但有思考,结合现有的开源组件,实践起来更易理解起来,所以看本文之前,应该先看下上篇博 ...
- 我们都被GitHub出卖了!逃跑吧兄弟!
周一突然间爆出微软以75亿收购GitHub可真是一颗重磅炸弹,一下轰动整个软件业.如果你不是搞开发的这篇文章几本不会引起你的共鸣:如果你没有用源代码管理这个消息也只不过是个新闻:如果你是微软系的朋友那 ...
- 助力ASP.NET Core 2.1开发!Layx 企业级弹窗插件发布!
我们在开发B/S架构企业管理系统时经常用到弹窗.目前市场上主要有两大弹窗:layer/artdialog,这两款做的都非常的棒.由于我们ERP系统比较复杂.需要能够拥有和Windows弹窗一样的弹窗组 ...
- Redux与它的中间件:redux-thunk,redux-actions,redux-promise,redux-saga
序言 这里要讲的就是一个Redux在React中的应用问题,讲一讲Redux,react-redux,redux-thunk,redux-actions,redux-promise,redux-sag ...
- IntelliJ IDE 常用配置
一. Intellij IDE 安装与破解 详细安装步骤 二.IntelliJ Maven 配置 查看: 使用IntelliJ IDEA 配置Maven(入门) 三.IntelliJ Tomcat 配 ...
- H5 标签选择器
08-标签选择器 我是段落 我是段落 我是段落 我是段落 我是段落 我是标题 <!DOCTYPE html> <html lang="en"> <he ...
- Latex(表格|图片(一丢丢))
目录 普通的例子 Notation 例子 p{width} 列分割符 @{} \multicolumn supertabular | longtabular 浮动体 table 浮动体 图片 \use ...
- 动态规划-LIS最长上升子序列
优化链接 [https://blog.csdn.net/George__Yu/article/details/75896330] #include<stdio.h> #include< ...
- 常用ASCII码对照表
- Linux之常用软件-服务
在使用Linux系统的时候,经常要使用一些功能,但是并不是系统自带的一些功能,这个时候就需要我们进行扩展安装一些软件. 1)telnet 检测telnet-server的rpm包是否安装 [root ...