N球M盒
N球,M盒,由于球是否相同,盒是否相同,盒是否可以为空,共2^3=8种:
1、球同,盒同,盒不可以为空Pm(N)--这符号表示部分数为m的N-分拆的个数,m是P的下标,为了好看我将大写的M弄成小写
2、球同,盒同,盒可以为空 Pm(N+M)--为什么要加M,与4为什么要在3的基础上加M是一样的,就是为了保证不为空
3、球同,盒不同,盒不可以为空C(N-1, M-1)
4、球同,盒不同,盒可以为空 C(N+M-1, M-1)
5、球不同,盒同,盒不可以为空S(N, M) --第二类斯特林数
6、球不同,盒同,盒可以为空 S (N, 1) + S(N, 2) + S(N, 3) + ... + S(N, M)
7、球不同,盒不同,盒不可以为空M! * S(N, M)
8、球不同,盒不同,盒可以为空 M^N--表示M的N次方
N球M盒的更多相关文章
- m球求n盒子问题
球同盒同可空盒问题 #include <bits/stdc++.h> using namespace std; const int N = 25; int dp[N][N]; int ma ...
- XidianOJ 1112 Too stupid
题目描述 某天 light由于太富而且太帅遭到了歹徒的袭击,现在他遇到了n个歹徒,准备对light施行不法行为,虽然light身体强壮,但是毕竟只有一个人肯定打不过那么多歹徒,但是高智商的light觉 ...
- [HEOI2016]求和 sum
[HEOI2016]求和 sum 标签: NTT cdq分治 多项式求逆 第二类斯特林数 Description 求\[\sum_{i=0}^n\sum_{j=0}^i S(i,j)×2^j×(j!) ...
- HMM隐Markov模型的原理及应用建模
这里不讲定量的公式.(由于我也没全然弄明确.不想误人子弟)仅仅谈高速定性理解. 隐Markov模型原理 隐Markov模型(Hidden Markov Model.HMM)的实质就是:已知几种原始分类 ...
- 一步一步实现基于GPU的pathtracer(二):求交算法
不管是哪种全局光照算法,最根本的都要落实到光线与物体的求交.主要分为光线与参数曲面和非参数曲面的求交,典型的参数曲面有球.盒.圆柱等基本体及基本体的组合体,以及一些更为复杂的参数曲面.非参数曲面就是所 ...
- Educational Codeforces Round 35 B/C/D
B. Two Cakes 传送门:http://codeforces.com/contest/911/problem/B 本题是一个数学问题. 有a个Ⅰ类球,b个Ⅱ类球:有n个盒子.将球放入盒子中,要 ...
- Algorithm: Permutation & Combination
组合计数 组合数学主要是研究一组离散对象满足一定条件的安排的存在性.构造及计数问题.计数理论是狭义组合数学中最基本的一个研究方向,主要研究的是满足一定条件的排列组合及计数问题.组合计数包含计数原理.计 ...
- 初赛Part2
初赛 时间复杂度 主定理(必考) \[ T(n) = aT(\frac{n}{b})+f(n) \] 其中,\(n\)为问题的规模,\(a\)为递推下子问题的数量,\(\frac{n}{b}\)为每个 ...
- UE4物理模块(二)---建立物体碰撞
在前文中介绍了什么是物理以及如何在UE4和PhysX中进行可视化调试: Jerry:UE4物理模块(一)---概述与可视化调试zhuanlan.zhihu.com 这里调试只谈到了碰撞盒(后续还会有 ...
随机推荐
- opencv自带fast_math.hpp
cvRound cvFloor cvCeil cvIsNaN cvIsInf
- Android——AsyncTask
AsyncTask简单介绍 我们首先需要明确Android之所以有Handler和AsyncTask,都是为了不阻塞主线程(UI线程),且UI的更新只能在主线程中完成,因此异步处理是不可避免的.And ...
- Prism框架中加载类库中时其中第三方类dll提示无法加载程序集
Prism框架是采用一种依赖注入的方式动态加载程序集,能够在程序需要加载的时候将程序集注入到里面去,实现程序的热插拔效果,而且采用这种框架能够让我们进行一个大项目的独立开发,在最近的一个项目中在独立开 ...
- Servlet的cookie使用,500报错,tomcat和cookie语法不兼容解决
出现类似上图的错误,应该是tomcat和cookie的语法不兼容 cookie不要用逗号","作分隔符,换井号#试试就可以了
- 如何快速定位到DBGrid的某一行!!!急...
比如我查找张三,那么DBGrid就可以定位到张三那行并选中这行,除了用循环实现还有没有快速定位的方法,谢谢! 解决方案 » to SuperTitan001 那如何找到张三的这行呢?除了用循环还有什么 ...
- [转]Java 的强引用、弱引用、软引用、虚引用
1.强引用(StrongReference) 强引用是使用最普遍的引用.如果一个对象具有强引用,那垃圾回收器绝不会回收它.如下: Object o=new Object(); // 强引用 当内存空间 ...
- window.onpopstate
概述 window.onpopstate是popstate事件在window对象上的事件句柄. 每当处于激活状态的历史记录条目发生变化时,popstate事件就会在对应window对象上触发. 如果当 ...
- 遍历map中的内容
Map<String, CartItem> cartItems = cart.getCartItems();for(Map.Entry<String, CartItem> en ...
- 进程间通信IPC与Binder机制原理
1, Intent隐式意图携带数据 2, AIDL(Binder) 3, 广播BroadCast 4, 内容提供者ContentProvider 5,Messager(内部通过binder实现) 6, ...
- VMware ezmomi工具使用
用两个静态IP克隆模板: ezmomi clone --template centos67 --hostname test01 --cpus 2 --mem 4 --ips 172.10.16.203 ...