COGS 2392 2393 2395 有标号的二分图计数
有黑白关系:
枚举左部点(黑色点),然后$2^{i*(n-i)}$处理方法同:COGS 2353 2355 2356 2358 有标号的DAG计数
无关系:
发现,假设$f(i)$是一个连通块,对于一个连通块,变成无颜色的,除以二即可
由结论COGS 2353 2355 2356 2358 有标号的DAG计数:G,F为EGF,$G=ln F$
所以方案就是:$e^{\frac{lnF}{2}}$
至于连通的话,不用exp就可以了
COGS 2392 2393 2395 有标号的二分图计数的更多相关文章
- COGS 有标号的二分图计数系列
其实这三道题都是不错的……(虽然感觉第三题略套路了……) 分别写一下做法好了…… COGS2392 有标号的二分图计数 I 这个就很简单了,Noip难度. 显然可以直接认为黑点和白点分别位于二分图两侧 ...
- cogs [HZOI 2015]有标号的二分图计数
题目分析 n个点的二分染色图计数 很显然的一个式子 \[ \sum_{i=0}^n\binom{n}{i}2^{i(n-i)} \] 很容易把\(2^{i(n-i)}\)拆成卷积形式,前面讲过,不再赘 ...
- cogs 2355. [HZOI 2015] 有标号的DAG计数 II
题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方 ...
- COGS 2353 2355 2356 2358 有标号的DAG计数
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...
- COGS 2396 2397 [HZOI 2015]有标号的强连通图计数
题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图, ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
随机推荐
- WSL Windows subsytem linux 的简单学习与使用
1. win10 1709 以上的版本应该都增加上了 ctrl +r 运行 winver 查看版本 2. 添加删除程序 增加 wsl 增加一个功能 3. 打开cmd 输入 bash 即可 4. 可以将 ...
- 逻辑斯特回归tensorflow实现
calss #!/usr/bin/python2.7 #coding:utf-8 from __future__ import print_function import tensorflow as ...
- mybatis源码分析(二)------------配置文件的解析
这篇文章中,我们将讲解配置文件中 properties,typeAliases,settings和environments这些节点的解析过程. 一 properties的解析 private void ...
- Ajax发送请求等待时弹出模态框等待提示
主要的代码分为两块,一个是CSS定义模态框,另一个是在Ajax中弹出模态框. 查看菜鸟教程中的模态框教程demo,http://www.runoob.com/try/try.php?filename= ...
- day 7-12 数据库的基本操作和存储引擎
一. 储备知识 数据库服务器:一台高性能计算机 数据库管理系统:mysql(mssql等),是一个软件 数据库:db1(student_db),是一个文件夹 表:studen_info 是一个文件 记 ...
- Dom4j解析
dom4j-1.6.1.jar, 这个包提供了xml解析相关的方法. 这里做一个记录,微信公众号里需要对HttpServletRequest做解析,实际上也可以用dom4j提供的方法进行解析转换. 这 ...
- postman+jenkins+newman自动化api接口测试
一.下载nodejs https://nodejs.org/zh-cn/download/ 二.linux下解压 xz -d node-v8.11.3-linux-x64.tar.xz tar xf ...
- wget 下载网页
如有转载,不胜荣幸.http://www.cnblogs.com/aaron-agu/ wget --http-user=username --http-passwd=password http:/w ...
- LodopJS文档式模版的加载和赋值
Lodop模版有两种方法,一种是传统的JS语句,可以用JS方法里的eval来执行,一种是文档式模版,是特殊格式的base64码,此篇博文介绍文档式模版的加载,文档式模版的生成以及传统JS模版的生成加载 ...
- Django restframe 视图函数以及ModelSerializer的使用
建立model数据库 from django.db import models __all__ = ['Book', 'Publisher', 'Author'] # Create your mode ...