【最短路算法】Dijkstra+heap和SPFA的区别
单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap、SPFA(Shortest Path Faster Algorithm)算法。这两个算法写起来非常相似。下面就从他们的算法思路、写法和适用场景上进行对比分析。如果对最短路算法不太了解,可先看一下相关ppt:最短路
为了解释得简单点,以及让对比更加明显,我就省略了部分细节。
我们先看优化前的:
\(O(V^2 + E)\)的Dijkstra
n-1次循环
-->找到未标记的d最小的点
-->标记,松弛它的边
\(O(VE)\)的Bellman-Ford
n-1次循环
-->对所有边松弛
还能再松弛则有负环
- Dijkstra是每次确定了到一个点的最短距离,再用该点更新到其它点的距离。不能处理有负边的图。
- Bellman-Ford是每次对所有边松弛。可以计算出有负边无负环的最短路,可以判断是否存在负环。
接下来再看优化后的:
\(O((V + E)lgV)\)的Dijkstra+heap优化
用STL中的优先队列实现堆:
while(优先队列非空)
-->队头出队,松弛它的边
-->松弛了的<新距离,点>入队
删了部分定义和初始化的代码:
typedef pair<int,int> PII;
priority_queue<PII,vector<PII>,greater<PII> > q;
...
while(!q.empty()){ // O(V) 加上count<n可以优化一点点
int w=q.top().first, u=q.top().second;
q.pop(); // O(lgV)
if(b[u])continue; b[u]=true;
//++count;
for(int i=head[u];i;i=e[i].next){ // Sum -> O(E)
int v=e[i].to;
if(d[u]+e[i].w<d[v]){
d[v]=d[u]+e[i].w;
q.push(PII(d[v],v)); // O(lgV)
}
}
}
\(O(kE)\)\(O(VE)\)的SPFA
while(队非空)
-->队头出队,松弛它的边
-->松弛了且不在队内的点入队
while(!q.empty()){
int u=q.front(); q.pop();
b[u]=false;
for(int i=head[u];i;i=e[i].next){
int v=e[i].to;
if(d[u]+e[i].w<d[v]){
d[v]=d[u]+e[i].w;
if(!b[v])b[v]=true,q.push(v);
}
}
}
算法思路对比
- Dijkstra+heap是用小根堆,每次取出d最小的点,来更新距离,那么这个点来说,最小距离就是当前的d。
- SPFA是用双端队列,每次取出队头,来更新距离,它之后可能还会入队。它是一种动态逼近法,因为每次松弛距离都会减小,所以松弛一定会有结束的。如果一个点入队超过n次就是存在负环。
复杂度分析对比
Dijkstra+heap
- 因为是堆,取队头需要O(lgV)。
- 松弛边时,因为点的d改变了,所以点v需要以新距离重新入堆,O(lgV),总共O(ElgV)。
- 因此总的是\(O((V + E)lgV)\)
SPFA
- 论文证明也不严格。复杂度不太好分析。
- 总的是O(kE)。k大概为2。
- 复杂度应该是 \(O(VE)\)。
适用场景
如果是稠密图,Dijkstra+heap比SPFA快。稀疏图则SPFA更快。SPFA可以有SLF和LLL两种优化,SLF就是d比队头小就插入队头,否则插入队尾。
另外,Dijkstra和Prim也很相似,它们的区别主要是d的含义,前者是到s的临时最短距离,后者是到树的临时最短距离,相同点是,每次找d最小的更新其它点的距离。
【最短路算法】Dijkstra+heap和SPFA的区别的更多相关文章
- 10行实现最短路算法——Dijkstra
今天是算法数据结构专题的第34篇文章,我们来继续聊聊最短路算法. 在上一篇文章当中我们讲解了bellman-ford算法和spfa算法,其中spfa算法是我个人比较常用的算法,比赛当中几乎没有用过其他 ...
- (转)最短路算法--Dijkstra算法
转自:http://blog.51cto.com/ahalei/1387799 上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短 ...
- 最短路算法 Dijkstra 入门
dijkstra算法 是一种单源点最短路算法求出一个点到其他所有点的最短路. 给你这样的一个图,需要求出1号点到其他点的最短距离是多少. 首先我们开一个数组 d[N],d[x] 代表着从起点出发到x点 ...
- [ACM] 最短路算法整理(bellman_ford , SPFA , floyed , dijkstra 思想,步骤及模板)
以杭电2544题目为例 最短路 Problem Description 在每年的校赛里,全部进入决赛的同学都会获得一件非常美丽的t-shirt. 可是每当我们的工作人员把上百件的衣服从商店运回到赛场的 ...
- 最短路算法 —— Dijkstra算法
用途: 解决单源最短路径问题(已固定一个起点,求它到其他所有点的最短路问题) 算法核心(广搜): (1)确定的与起点相邻的点的最短距离,再根据已确定最短距离的点更新其他与之相邻的点的最短距离. (2) ...
- 图的最短路算法 Dijkstra及其优化
单源最短路径算法 时间复杂度O(N2) 优化后时间复杂度为O(MlogN)(M为图中的边数 所以对于稀疏图来说优化后更快) 不支持有负权的图 #include<iostream> usin ...
- 最短路算法详解(Dijkstra/SPFA/Floyd)
新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...
- 最短路算法(floyed+Dijkstra+bellman-ford+SPFA)
最短路算法简单模板 一.floyed算法 首先对于floyed算法来说就是最短路径的动态规划解法,时间复杂度为O(n^3) 适用于图中所有点与点之间的最短路径的算法,一般适用于点n较小的情况. Flo ...
- hdoj 2544 最短路【dijkstra or spfa】
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
随机推荐
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- Python—randonm模块介绍
random是python产生伪随机数的模块 >>> random.randrange(1,10) #返回1-10之间的一个随机数,不包括10 >>> random ...
- 动态规划-LIS最长上升子序列
优化链接 [https://blog.csdn.net/George__Yu/article/details/75896330] #include<stdio.h> #include< ...
- 正则校验:微信号,qq号,邮箱
java判断微信号.手机.名字的正则表达 - willgos - 博客园https://www.cnblogs.com/solossl/p/5813106.html 微信号正则校验,qq正则,邮箱正则 ...
- 通过event记录sql
providers EventServiceProvider.php 添加 protected $listen = [ 'Illuminate\Database\Events\QueryExecute ...
- [转帖] bat方式遍历目录内的文件
https://blog.csdn.net/qq_34924407/article/details/82781956 知识挺好用的 学习一下. #所有文件,包括子目录下的文件 @echo offcd ...
- 虚拟机安装CentOS7之后没有ip的问题
CentOS 7 默认是不启动网卡的(ONBOOT=no),主要是修改一下网上配置,然后重起便可,看这篇博客操作: https://blog.csdn.net/dancheren/article/de ...
- Kettle 变量(arg位置参数)
1.表输入中使用?占位作为kettle转换变量 数据预览: 获取变量数据: 使用?传入变量 需要勾选替换sql语句中的变量,并选则从步骤插入数据中所在步骤 数据预览
- NIO服务器与客户端
这里客户端没有采用NIO形式 服务器: package com.util.Server.NIO; import javax.print.DocFlavor;import java.io.IOExcep ...
- Yii2的save()方法容易出错的地方
如果save()返回true, 但是数据没有保存成功,则应该是开启了事务且已经回滚 如果save()返回false, 则使用$model->errors查看错误原因 可以设置$model的场景, ...