【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

题面

UOJ

题解

毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ

一开始开错题了,根本就不会做。

后来发现是每次任意覆盖相邻的两个,那么很明显就可以套\(min-max\)容斥。

要求的就是\(max(All)\),而每个集合的\(min\)是很好求的。

如果直接暴力枚举集合复杂度就是\(2^{cnt}cnt\)。

仔细想想每个子集我们要知道的是什么,只需要知道子集大小来确定前面的容斥系数,还需要知道覆盖子集的方案数,这样就可以知道\(min\)的概率,倒数就是期望了。

而覆盖子集的方案数不会超过\(2*n*m-n-m\),显然要比\(2^{cnt}\)优秀。

所以枚举覆盖子集的方案数来\(dp\),至于子集大小之和容斥系数相关,而容斥系数只有正负\(1\),所以直接乘进去一起转移就好了,不需要单独存一维状态。

考虑每次新加入一个点之后的覆盖方案,只需要知道当前位置四周是否已经存在于子集当中,那么直接状压当前的轮廓线就好了。

设状态\(f[S][k]\)表示覆盖方案数为\(k\),轮廓线为\(S\)时的方案数,容斥系数已经考虑进去。

显然当前位置可以不选,那么直接转移。

如果当前位置可以选入子集,那么乘上系数\(-1\),同时修改覆盖方案数以及轮廓线的状态转移。

最后按照\(min-max\)容斥统计答案即可。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 998244353
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
char g[200][200];
int n,m,inv[1500],sum,pw,nw,ans,S;
int f[2][1<<6][1200];
int main()
{
scanf("%d%d",&n,&m);S=1<<n;sum=2*n*m-n-m;
for(int i=1;i<=n;++i)scanf("%s",g[i]+1);
inv[0]=inv[1]=1;for(int i=2;i<1500;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
f[0][0][0]=MOD-1;
for(int i=1;i<=m;++i)
for(int j=1;j<=n;++j)
{
pw=nw;nw^=1;memset(f[nw],0,sizeof(f[nw]));
for(int T=0;T<S;++T)
for(int k=0;k<=sum;++k)
if(f[pw][T][k])
{
int nT=T&((S-1)^(1<<(j-1)));
add(f[nw][nT][k],f[pw][T][k]);
if(g[j][i]=='*')
{
nT|=1<<(j-1);int pls=0;
if(j>1&&!(T&(1<<(j-2))))++pls;
if(i>1&&!(T&(1<<(j-1))))++pls;
if(i<m)++pls;if(j<n)++pls;
add(f[nw][nT][k+pls],MOD-f[pw][T][k]);
}
}
}
for(int T=0;T<S;++T)
for(int i=1;i<=sum;++i)
add(ans,1ll*f[nw][T][i]*inv[i]%MOD);
ans=1ll*ans*sum%MOD;printf("%d\n",ans);
return 0;
}

【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)的更多相关文章

  1. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  2. UOJ 422 - 【集训队作业2018】小Z的礼物(Min-Max 容斥+轮廓线 dp)

    题面传送门 本来说要找道轮廓线 \(dp\) 的题目刷刷来着的?然后就找到了这道题. 然鹅这个题给我最大的启发反而不在轮廓线 \(dp\),而在于让我新学会了一个玩意儿叫做 Min-Max 容斥. M ...

  3. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  4. uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)

    题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...

  5. UOJ 449 【集训队作业2018】喂鸽子 【生成函数,min-max容斥】

    这是第100篇博客,所以肯定是要水过去的. 首先看到这种形式的东西首先min-max容斥一波,设\(f_{c,s}\)表示在\(c\)只咕咕中,经过\(s\)秒之后并没有喂饱任何一只的概率. \[ \ ...

  6. [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

  7. uoj #450[集训队作业2018]复读机

    传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...

  8. UOJ#422. 【集训队作业2018】小Z的礼物

    #422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...

  9. 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物

    T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...

随机推荐

  1. Django lazy load 懒加载 倒序查询

    Django orm默认懒加载   Django orm默认使用的懒加载,即使用的时候才去访问数据库,且每次默认取最少的数据,当然这样有好处也有坏处... 坏处: 会导致频繁的查询数据库,如涉及到外键 ...

  2. 简约时尚商城wordpress主题-storefront

    wordpress主题:简约时尚商城主题-storefront 简简单的商城模板,挺适合一些懒人所用.后天功能也挺不错,希望大家喜欢. WooCommerce 集成 商城是基为用 WooCommerc ...

  3. Django的contenttypes

    这是一个django内置的表结构,为的就是通过两个字段让表和N张表创建FK关系. 比如说有两种不同课程,这两种课程都有价格周期和策略.如果最低级的则是给每个表创建一个价格策略.如果非要在同一个表内使用 ...

  4. 三、taro路由及设计稿及尺寸单位

    一.路由配置 路由配置跟小程序一样,在入口文件的 config 配置中指定好 pages 通过taro API 跳转,详见导航 // 跳转到目的页面,打开新页面 Taro.navigateTo({ u ...

  5. laravel get和all区别

      get ,all 都可以获取到模型 all 是直接获取所有,get 是在添加了许多约束之后获取模型,get前面如果不加约束条件的话,效果与all等同

  6. mysql5.7以上安装

    下载:https://dev.mysql.com/downloads/mysql/ 1.在解压的mysql下(bin目录统计),创建my.ini 文件,内容日下(路径根据自己的目录修改) [mysql ...

  7. Windows BAT 命令下del 与 rd 命令

    https://blog.csdn.net/jigetage/article/details/81180757 RD 与 DEL 命令 windows bat 目录和文件的删除处理. 命令:RD,删除 ...

  8. js中style,currentStyle和getComputedStyle的区别以及获取css样式操作方法

    用js的style只能获取元素的内联样式,内部样式和外部样式使用style是获取不到的. currentStyle可以弥补style的不足(可获取内联样式,内部样式和外部样式),但是只适用于IE. g ...

  9. select2 简单解析

    <select name="supplierId" class="customsBrokerSel select2 absOpacity select2-hidde ...

  10. CentOS7下Nginx搭建反向代理,并使用redis保存session

    1.启动两个tomcat,端口分别为8080,8081 2.配置nginx,vim /usr/local/nginx/conf/nginx.conf 添加如下配置: 3.启动nginx或热加载 启动: ...