题意

定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1\) , 那么边 \((u, v)\) 在 \(G\) 中, 否则这条边不在 \(G\) 中.

现在给定 \(s\) 个结点数相同的图 \(G_{1...s}\) , 设 \(S = {G_1, G_2, \cdots , G_s}\) , 请问 \(S\) 有多少个子集的异或为一个连通图?

\(n \le 10, s \le 60\)

题解

原来听过这题,但一直没有想去写,又讲了一遍,就来做了下,可是还不会。。。

连通图计数的一个经典思路就是容斥。

对于这道题,我们先用贝尔数 \(bell(n)\) 的时间来枚举 \(n\) 个点的子集(联通块)划分,强制连通性 至少 是这个划分。

也就是说,不同子集的两个点之间一定没有边,相同子集的两个点则任意。

对于一个有 \(m\) 个连通块的图。令 \(f_i\) 为至少有 \(i\) 个联通块的容斥系数需要满足

\[\sum_{i = 1}^{m} {m\brace i} f_i = [m = 1]
\]

可以斯特林反演,也可以打表找规律得出

\[f_i = (-1)^{i - 1} (i - 1)!
\]

那么问题就转化成,我们只考虑不同子集中的边。对于 \(s\) 个边集,有多少种异或方案使得异或和为 \(0\) 。

这个显然是可以利用线性基得到异或方案的,记线性基的元素个数为 \(tot\) ,由于之中的元素是线性无关的,其他的 \(2^{s - tot}\) 个集合是一定可以通过异或(或不异或)线性基里的某些元素得到 \(0\) 的。

那么方案数其实就是 \(2^{s - tot}\) 。

因为此题卡常,所以要卡一些常数才能通过此题qwq 具体可以看代码实现优化。

代码

#include <bits/stdc++.h>

#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl using namespace std; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("4671.in", "r", stdin);
freopen ("4671.out", "w", stdout);
#endif
} typedef long long ll; const int N = 12, M = 62; int Strl[N][N], id[N][N], n, s, fac[N], coef[N]; bitset<N> E[M][N]; char str[M]; ll base[M], ans; int bel[N]; pair<int, int> ins[M]; void Dfs(int u, int tot) {
if (u > n) {
Set(base, 0);
int res = 0, tmp = -1;
For (i, 1, n) For (j, i + 1, n)
if (bel[i] != bel[j]) {
ins[++ tmp] = make_pair(i, j);
}
For (i, 1, s) {
ll now = 0;
For (j, 0, tmp) if (E[i][ins[j].first][ins[j].second]) now |= 1ll << j;
Fordown (j, tmp, 0) if (now >> j & 1) {
if (base[j]) now ^= base[j];
else { base[j] = now; ++ res; break; }
}
}
ans += coef[tot] * (1ll << (s - res));
return;
}
For (i, 1, tot + 1)
bel[u] = i, Dfs(u + 1, max(tot, i));
} int main () { File(); s = read();
scanf ("%s", str + 1); int len = strlen(str + 1); while (n * (n - 1) / 2 < len) ++ n; For (k, 1, s) {
len = 0;
For (i, 1, n) For (j, i + 1, n)
E[k][i][j] = str[id[i][j] = ++ len] - '0';
if (k < s) scanf ("%s", str + 1);
} fac[0] = 1;
For (i, 1, n) {
fac[i] = 1ll * fac[i - 1] * i;
coef[i] = (i & 1 ? 1 : -1) * fac[i - 1];
}
Dfs(1, 0); printf ("%lld\n", ans); return 0; }

BZOJ4671 异或图(容斥+线性基)的更多相关文章

  1. BZOJ4671 异或图 斯特林反演+线性基

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...

  2. bzoj 4671 异或图——容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...

  3. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  4. bzoj4671 异或图(斯特林反演,线性基)

    bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...

  5. bzoj4671: 异或图

    bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...

  6. bzoj4671: 异或图——斯特林反演

    [BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...

  7. BZOJ4671异或图

    题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 ...

  8. P5169 xtq的异或和(FWT+线性基)

    传送门 我咋感觉我学啥都是白学-- 首先可以参考一下这一题,从中我们可以知道只要知道两点间任意一条路径以及整个图里所有环的线性基,就可以得知这两个点之间的所有路径的异或和 然而我好像并不会求线性基能张 ...

  9. bzoj 2844 albus就是要第一个出场 异或和出现次数 线性基

    题目链接 题意 给定\(n\)个数,将其所有的子集(\(2^n\)个)的异或和按升序排列.给出一个询问\(q\),问\(q\)在该序列中第一次出现位置的下标(下标从\(1\)开始). 题解 结论 记其 ...

随机推荐

  1. c++入门之初话指针

    先上代码:再进行总结知识: # include "iostream" struct ant_year_end { int year; }; int main() { using n ...

  2. Elasticsearch 关键字:索引,类型,字段,索引状态,mapping,文档

    1. 索引(_index)索引:说的就是数据库的名字.我这个说法是对应到咱经常使用的数据库. 结合es的插件 head 来看. 可以看到,我这个地方,就有这么几个索引,索引就是数据库,后面是这个数据库 ...

  3. 课程存储校对:程序设计思想、源程序代码、运行结果截图,以及开发过程中的项目计划日志、时间记录日志、缺陷记录日志(PSP0级记录)。

    1.程序设计思想 ⑴将JDBC驱动jar包导入到WEB-INF的lib文件夹下 ⑵建立数据库,在数据库中建表,分别将课程名称.任课教师及上课地点录入到列中 ⑶首先写出加载驱动.关闭资源的工具类和异常处 ...

  4. Excel之批量改变特定字体颜色(转载)

    改变单元格内部分特定字符的颜色,如果批量操作,需要用宏处理, 如下例,将范围内 所有字母A 变成红色 操作步骤:右键点击工作表标签,查看代码,如下代码复制进去Private Sub CommandBu ...

  5. CentOS查看和修改PATH环境变量的方法 profile

    https://blog.csdn.net/dongheli/article/details/83987092

  6. IdentityServer4【Topic】之StartUp中的配置

    Startup 身份服务器是中间件和服务的组合.所有的配置都是在启动类中完成的. Configuring services 通过调用如下代码在DI(dependency inject,依赖注入)中添加 ...

  7. Linux df 与du用法

    df 查看一级目录的大小,但是不能查看文件的大小.du 可以查看目录或者文件大小. 1 df的基本用法 df命令可以显示目前所有文件系统的总空间及当前可用空间,用法如下: -a 全部文件系统列表-h ...

  8. spring后置处理器BeanPostProcessor

    BeanPostProcessor的作用是在调用初始化方法的前后添加一些逻辑,这里初始化方法是指在配置文件中配置init-method,或者实现了InitializingBean接口的afterPro ...

  9. Angular 自定义指令传参

    <!DOCTYPE html><html ng-app="myApp"><head lang="en"> <meta ...

  10. python爬虫之scrapy文件下载

    我们在写普通脚本的时候,从一个网站拿到一个文件的下载url,然后下载,直接将数据写入文件或者保存下来,但是这个需要我们自己一点一点的写出来,而且反复利用率并不高,为了不重复造轮子,scrapy提供很流 ...