论文背景:

  • 面对来袭的数据,连续样本不一定是不相关的,甚至不是同分布的。
  • 当前,大部分在线PCA都只关注准确性,而忽视时效性!
  • 噪声?数据缺失,观测有偏,重大异常?

论文内容:

Section 2

Online Settings
Online PCA, 就是在观察到\(x1, x2, x3, \dots, x_{t-1}\)后,“构造”一个\(k-\)维的子空间,通常用投影矩阵\(P^{(t)}\)表示——为了最小化残差\(\|x_t - P^{(t)}\|^2\)
这篇论文重点在于界的分析,考虑下面的“遗憾”(大概就是误差的意思):
\(R(T,P) = \mathop{\sum}\limits_{t=1}^{T}x_t^{\top}Px_t-\mathop{\sum}\limits_{t=1}^{T}x_t^{\top}P^{(t)}x_t\)
其中P为任意的rank-k的正交投影矩阵,T为迭代次数。
\(R(T,P)\)的界是次线性的,所以,我们可以通过\(\frac{1}{T}R(T,P)\)来计算算法到达\(\varepsilon-\)界所需的时间,从而衡量算法的优劣。
Matrix gradient descent (MGD)

  1. 将非凸条件放松为凸条件:
    \(C =\lbrace P: Tr(P):=k, 0\preceq P \preceq I, P = P^{\top} \rbrace\)
  2. \(P^{t+1} = \prod_F(P^{t} + \eta g_t^{\top})\) Here
  3. 学习后的\(P\),不一定满足原来的凸条件(投影), 故:
    \(\hat{P}^{t} = rounding(P^{t})\)

对于这个算法并不了解,姑且只能这么想了。点这里
下面是关于(遗憾)的一个界:

Stochastic Settings
在某些情况下,MGD算法复杂度比较高,所以,在额外的假设下,利用Oja的另外一种算法可能会比较有优势。
The additional assumption that \(x_t\) are sampled i.i.d. from some unknown distribution \(D\) and that \(\|x_t\|\leq1\) almost surely.
最近已经有相关方面的论文指出,在\(k=1\)的条件下,这个算法也可以到达次线性。

Section 3 corrupted gradients
在这一节,论文讲关于梯度被“污染”的情形。
Online Setting
梯度被污染的原因:

  1. 对于大数据不正确的运算
  2. 分布式和并行运算中,异步和噪声通讯导致的误差
    此时的学习单位步长为:
    \(\hat{\mathrm{g}}_t = x_tx_t^{\top}+E_t\)

给出了下列定理:

Stochastic Setting

被污染的原因:数据被污染,设噪声向量为\(y_t\),且与\(x_t\)独立。(k=1)
\(\hat{\mathrm{g}}_t = (x_t + y_t)(x_t + y_t)^{\top}\)

Section 4 Missing Entries

这一章,讲矩阵缺失数据的情形。
假设\(x_t\)的每个元素将按照\(q-Brtnoulli\)分布被保留,否则缺失。

Online Setting

此时,学习步长又变为:
\(\hat{\mathrm{g}}_t := \hat{x}_t\hat{x}_t^{\top} - z_tz_t^{\top}\)
论文中为上式取负,但更新\(P\)的时候又取负,所以我直接不变了。

有下面的界:

Stochastic Setting

在推导这个界的时候,似乎遇到了麻烦,新的迭代步长不能保证半正定,所以需要进行一个处理(因为证明都没看,所以不懂啊)。

给出了一个定理(k = 1):

Section 5 Partial Observations

本节是讲观测偏差,\(x_t\)只有\(r<d\)个元素被观测到。

下面是对步长的分析与构造,但是,我对\(z\)的构造存疑,我觉得
\(z = \sqrt{\frac{d^2-dr}{r-1}}\widetilde{x}_{i_s}e_{i_s}\)

Online Setting

\(\hat{\mathrm{g}}_t\)同上

有下面的界:

Stochastic Setting

有下面的界(k=1):

Section 6 Robust streaming PCA

针对异常值,探讨如何使得算法变得“健壮”。

新的regret:

\(R_{abs}(T) = \mathop{\sum}\limits_{t=1}^{T}\|x_t-P^{t}x_t\|_2-\mathop{inf}\limits_{P\in P_k} \mathop{\sum}\limits_{t=1}^{T}\|x_t-Px_t\|_2\)
for any sequence \(x_1,\ldots,x_T \in \mathbb{R}^{d}\).
新的:
\(\mathrm{g}_t=-\frac{x_tx_t^{\top}(I-P^{(t)}) + (I-P^{(t)})x_tx_t^{\top}}{2\|(I-P^{(t)})x_t\|_2}\)
denote:
\(y_t = (I-P^{(t)})x_t\) and \(c_t = \frac{\eta}{2\|y_t\|_2}\)
\(P^(t+1) = \prod_F(P^{t} + c_t(x_ty_t^{\top}+y_tx_t^{\top}))\)

从而有下面定理:

Streaming Principal Component Analysis in Noisy Settings的更多相关文章

  1. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  2. Robust Principal Component Analysis?(PCP)

    目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...

  3. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  4. 《principal component analysis based cataract grading and classification》学习笔记

    Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...

  5. PCA(Principal Component Analysis)主成分分析

    PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...

  6. Principal Component Analysis(PCA)

    Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...

  7. (4)主成分分析Principal Component Analysis——PCA

    主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...

  8. Principal Component Analysis ---- PRML读书笔记

    To summarize, principal component analysis involves evaluating the mean x and the covariance matrix ...

  9. 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理

    0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...

随机推荐

  1. [20190214]11g Query Result Cache RC Latches补充.txt

    [20190214]11g Query Result Cache RC Latches补充.txt --//上午测试链接:http://blog.itpub.net/267265/viewspace- ...

  2. android 休眠唤醒机制分析(一) — wake_lock【转】

    Android的休眠唤醒主要基于wake_lock机制,只要系统中存在任一有效的wake_lock,系统就不能进入深度休眠,但可以进行设备的浅度休眠操作.wake_lock一般在关闭lcd.tp但系统 ...

  3. c/c++ 智能指针 unique_ptr 使用

    智能指针 unique_ptr 使用 和shared_ptr不同,可以有多个shared_ptr指向同一个内存,只能有1个unique_ptr指向某个内存.因此unique_ptr不支持普通的拷贝和赋 ...

  4. eclipse版本对应名称以及下载地址

        Eclipse 1.0         2001年11月7日(Win32/Linux32 Motif) Eclipse 2.0         2002年6月27日(Linux32 Motif ...

  5. mysql 中的内置函数

    一.字符串函数 select concat(name,"age is",age) from users;  insert(str,x,y,insert)//将字符串x位置开始y个位 ...

  6. vue使用JS的形式进行路由导航

    // 注意: 一定要区分 this.$route 和 this.$router 这两个对象, // 其中: this.$route 是路由[参数对象],所有路由中的参数, params, query ...

  7. SudokuGame 记软工第二次作业

    整体概况 1.描述编写整体程序正确过程(含关键代码) 2.整体心路历程及新知分析 3.效能分析.构建之法及整体耗时时间表 4.一些心得体会 GitHub 链接如下: 1.[基础作业BIN文件(最新版) ...

  8. maven中可以直接引用的java系统属性和环境变量属性

    一.查看命令: 1 mvn help :system 二.引用 在pom文件中通过 ${变量名}来引用 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

  9. 新建SpringBoot项目运行页面报错Whitelabel Error Page This application has no explicit mapping for /error, so yo

    新建SpringBoot项目运行页面报错Whitelabel Error Page This application has no explicit mapping for /error, so yo ...

  10. Git 安装及用法 github 代码发布 gitlab私有仓库的搭建

    版本控制是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统. 这个版本控制软件,有 svn还有git,是一个工具. git是由linux的作者开发的 git是一个分布式版本控制系统 ...