jupyter notebook: https://github.com/Penn000/NN/blob/master/notebook/LeNet/LeNet.ipynb

LeNet训练MNIST

 import warnings
 warnings.filterwarnings('ignore')  # 不打印 warning 

 import tensorflow as tf
 import numpy as np
 import os

加载MNIST数据集

分别加载MNIST训练集、测试集、验证集

 from tensorflow.examples.tutorials.mnist import input_data

 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
 X_train, y_train = mnist.train.images, mnist.train.labels
 X_test, y_test = mnist.test.images, mnist.test.labels
 X_validation, y_validation = mnist.validation.images, mnist.validation.labels
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
 print("Image Shape: {}".format(X_train.shape))
 print("label Shape: {}".format(y_train.shape))
 print()
 print("Training Set:   {} samples".format(len(X_train)))
 print("Validation Set: {} samples".format(len(X_validation)))
 print("Test Set:       {} samples".format(len(X_test)))
Image Shape: (55000, 784)
label Shape: (55000, 10)

Training Set:   55000 samples
Validation Set: 5000 samples
Test Set:       10000 samples

数据处理

由于LeNet的输入为32x32xC(C为图像通道数),而MNIST每张图像的尺寸为28x28,所以需要对图像四周进行填充,并添加一维,使得每幅图像的形状为32x32x1。

 # 使用0对图像四周进行填充
 X_train = np.array([np.pad(X_train[i].reshape((28, 28)), (2, 2), 'constant')[:, :, np.newaxis] for i in range(len(X_train))])
 X_validation = np.array([np.pad(X_validation[i].reshape((28, 28)), (2, 2), 'constant')[:, :, np.newaxis] for i in range(len(X_validation))])
 X_test = np.array([np.pad(X_test[i].reshape((28, 28)), (2, 2), 'constant')[:, :, np.newaxis] for i in range(len(X_test))])

 print("Updated Image Shape: {}".format(X_train.shape))
Updated Image Shape: (55000, 32, 32, 1)

MNIST数据展示

 import random
 import numpy as np
 import matplotlib.pyplot as plt
 %matplotlib inline

 index = random.randint(0, len(X_train))
 image = X_train[index].squeeze().reshape((32, 32))

 plt.figure(figsize=(2,2))
 plt.imshow(image, cmap="gray")
 print(y_train[index])

[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

LeNet网络结构

Input

The LeNet architecture accepts a 32x32xC image as input, where C is the number of color channels. Since MNIST images are grayscale, C is 1 in this case. LeNet的输入为32x32xC的图像,C为图像的通道数。在MNIST中,图像为灰度图,因此C等于1。

Architecture

Layer 1: Convolutional. 输出为28x28x6的张量。

Activation. 激活函数。

Pooling. 输出为14x14x6的张量。

Layer 2: Convolutional. 输出为10x10x16的张量。

Activation. 激活函数。

Pooling. 输出为5x5x16的张量。

Flatten. 将张量展平为一维向量,使用tf.contrib.layers.flatten可以实现。

Layer 3: Fully Connected. 输出为120长度的向量。

Activation. 激活函数。

Layer 4: Fully Connected. 输出为84长度的向量。

Activation. 激活函数。

Layer 5: Fully Connected (Logits). 输出为10长度的向量。

 # 卷积层
 def conv_layer(x, filter_shape, stride, name):
     with tf.variable_scope(name):
         W = tf.get_variable('weights', shape=filter_shape, initializer=tf.truncated_normal_initializer())
         b = tf.get_variable('biases', shape=filter_shape[-1], initializer=tf.zeros_initializer())
     return tf.nn.conv2d(x, W, strides=stride, padding='VALID', name=name) + b
 # 全连接层
 def fc_layer(x, in_size, out_size, name):
     with tf.variable_scope(name):
         W = tf.get_variable('weights', shape=(in_size, out_size), initializer=tf.truncated_normal_initializer())
         b = tf.get_variable('biases', shape=(out_size), initializer=tf.zeros_initializer())

     return tf.nn.xw_plus_b(x, W, b, name=name)
 def relu_layer(x, name):
     return tf.nn.relu(x, name=name)
 from tensorflow.contrib.layers import flatten

 def LeNet(x):
     conv1 = conv_layer(x, filter_shape=(5, 5, 1, 6), stride=[1, 1, 1, 1], name='conv1')
     relu1 = relu_layer(conv1, 'relu1')
     max_pool1 = max_pool_layer(relu1,  kernel_size=[1, 2, 2, 1], stride=[1, 2, 2, 1], name='max_pool1')

     conv2 = conv_layer(max_pool1, filter_shape=(5, 5, 6, 16), stride=[1, 1, 1, 1], name='conv2')
     relu2 = relu_layer(conv2, 'relu2')
     max_pool2 = max_pool_layer(relu2,  kernel_size=[1, 2, 2, 1], stride=[1, 2, 2, 1], name='max_pool1')

     flat = flatten(max_pool2)

     fc3 = fc_layer(flat, 400, 120, name='fc3')
     relu3 = relu_layer(fc3, 'relu3')

     fc4 = fc_layer(relu3, 120, 84, name='fc4')
     relu4 = relu_layer(fc4, 'relu4')

     logits = fc_layer(relu4, 84, 10, name='fc5')

     return logits

TensorFlow设置

 EPOCHS = 10
 BATCH_SIZE = 128
 log_dir = './log/'

 x = tf.placeholder(tf.float32, (None, 32, 32, 1))
 y = tf.placeholder(tf.int32, (None, 10))

 # 定义损失函数
 logits = LeNet(x)
 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits)
 loss = tf.reduce_mean(cross_entropy)
 train = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss)

训练

 from sklearn.utils import shuffle
 import shutil
 log_dir = './logs/'
 if os.path.exists(log_dir):
     shutil.rmtree(log_dir)
 os.makedirs(log_dir)
 train_writer = tf.summary.FileWriter(log_dir+'train/')
 valid_writer = tf.summary.FileWriter(log_dir+'valid/')

 ckpt_path = './ckpt/'
 saver = tf.train.Saver()

 with tf.Session() as sess:
     sess.run(tf.global_variables_initializer())
     n_samples = len(X_train)

     step = 0
     for i in range(EPOCHS):
         X_train, y_train = shuffle(X_train, y_train) # 打乱数据
         # 使用mini-batch训练
         for offset in range(0, n_samples, BATCH_SIZE):
             end = offset + BATCH_SIZE
             batch_x, batch_y = X_train[offset:end], y_train[offset:end]
             sess.run(train, feed_dict={x: batch_x, y: batch_y})

             train_loss = sess.run(loss, feed_dict={x: batch_x, y: batch_y})
             train_summary = tf.Summary(value=[
                 tf.Summary.Value(tag="loss", simple_value=train_loss)
             ])
             train_writer.add_summary(train_summary, step)
             train_writer.flush()
             step += 1

         # 每个epoch使用验证集对网络进行验证
         valid_loss = sess.run(loss, feed_dict={x: X_validation, y: y_validation})
         valid_summary = tf.Summary(value=[
                 tf.Summary.Value(tag="loss", simple_value=valid_loss)
         ])
         valid_writer.add_summary(valid_summary, step)
         valid_writer.flush()

         print('epoch', i, '>>> loss:', valid_loss)

     # 保存模型
     saver.save(sess, ckpt_path + 'model.ckpt')
     print("Model saved")
epoch 0 >>> validation loss: 39.530758
epoch 1 >>> validation loss: 19.649899
epoch 2 >>> validation loss: 11.780323
epoch 3 >>> validation loss: 8.7316675
epoch 4 >>> validation loss: 6.396747
epoch 5 >>> validation loss: 5.4544454
epoch 6 >>> validation loss: 4.5326686
epoch 7 >>> validation loss: 3.5578024
epoch 8 >>> validation loss: 3.2353864
epoch 9 >>> validation loss: 3.5096574
Model saved

训练和验证的loss曲线

测试

 correct = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
 accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

 with tf.Session() as sess:
     saver.restore(sess, tf.train.latest_checkpoint('./ckpt'))

     test_accuracy = sess.run(accuracy, feed_dict={x: X_test, y: y_test})
     print("Test Accuracy = {}".format(test_accuracy))
INFO:tensorflow:Restoring parameters from ./ckpt/model.ckpt
Test Accuracy = 0.9574000239372253

LeNet训练MNIST的更多相关文章

  1. Window10 上MindSpore(CPU)用LeNet网络训练MNIST

    本文是在windows10上安装了CPU版本的Mindspore,并在mindspore的master分支基础上使用LeNet网络训练MNIST数据集,实践已训练成功,此文为记录过程中的出现问题: ( ...

  2. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  3. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  4. CAFFE学习笔记(一)Caffe_Example之训练mnist

    0.参考文献 [1]caffe官网<Training LeNet on MNIST with Caffe>; [2]薛开宇<读书笔记4学习搭建自己的网络MNIST在caffe上进行训 ...

  5. Caffe_Example之训练mnist

    0.参考文献 [1]caffe官网<Training LeNet on MNIST with Caffe>; [2]薛开宇<读书笔记4学习搭建自己的网络MNIST在caffe上进行训 ...

  6. 【Caffe 测试】Training LeNet on MNIST with Caffe

    Training LeNet on MNIST with Caffe We will assume that you have Caffe successfully compiled. If not, ...

  7. 2、TensorFlow训练MNIST

    装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...

  8. TensorFlow训练MNIST报错ResourceExhaustedError

    title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning ...

  9. mxnet卷积神经网络训练MNIST数据集测试

    mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...

随机推荐

  1. 为什么使用 Spring Boot?

    Spring 是一个非常流行的基于Java语言的开发框架,此框架用来构建web和企业应用程序.与许多其他仅关注一个领域的框架不同,Spring框架提供了广泛的功能,通过其组合项目满足现代业务需求. S ...

  2. 基于APNs最新HTTP/2接口实现iOS的高性能消息推送(服务端篇)

    1.前言 本文要分享的消息推送指的是当iOS端APP被关闭或者处于后台时,还能收到消息/信息/指令的能力. 这种在APP处于后台或关闭情况下的消息推送能力,通常在以下场景下非常有用: 1)IM即时通讯 ...

  3. Redis 配置内容总结

    命令 Redis 的配置文件位于 Redis 安装目录下,文件名为 redis.conf. 你可以通过 CONFIG 命令查看或设置配置项. (1)config get config_setting_ ...

  4. display: table-cell的实用应用

    概述 之前工作中碰到了一个垂直居中问题,最后通过查资料利用table-cell解决.于是打算总结一下有关table-cell的应用,记录下来,供以后开发时参考,相信对其他人也有用. 参考资料:我所知道 ...

  5. Kali学习笔记22:缓冲区溢出漏洞利用实验

    实验机器: Kali虚拟机一台(192.168.163.133) Windows XP虚拟机一台(192.168.163.130) 如何用Kali虚拟机一步一步“黑掉”这个windowsXP虚拟机呢? ...

  6. Linux编程 22 shell编程(输出和输入重定向,管道,数学运算命令,退出脚本状态码)

    1. 输出重定向 最基本的重定向是将命令的输出发送到一个文件中.在bash shell中用大于号(>) ,格式如下:command > inputfile.例如:将date命令的输出内容, ...

  7. win32程序之窗口程序,以及消息机制

    win32程序值窗口程序,以及消息机制 一丶简介 通过上一讲.我们了解了窗口其实是绘制出来的.而且是不断绘制的过程. 所以窗口的本质是绘制. 但是我们现在看到的窗口程序.都可以点击关闭按钮. 使用鼠标 ...

  8. Chrome 浏览器最牛插件之一 Vimium

    导航当页: ? 显示help,查询vimium的所有使用方法 h 向左滚动 j 向下滚动 k 向上滚动 l 向右滚动 gg 滚动到顶部 G 滚动到底部 d 向下滚动半页 u 向上滚动半页面 f 显示链 ...

  9. Dubbo 源码分析系列之三 —— 架构原理

    1 核心功能 首先要了解Dubbo提供的三大核心功能: Remoting:远程通讯 提供对多种NIO框架抽象封装,包括"同步转异步"和"请求-响应"模式的信息交 ...

  10. NTP时间服务器实战应用详解-技术流ken

    简介 在搭建集群服务中,要保证各节点时间一致,NTP时间服务器就成为了一个好帮手了. 系统环境 系统版本:centos6.7 服务器IP:10.220..5.166/24 客户端IP:10.220.5 ...