吴恩达机器学习笔记49-主成分分析问题(Principal Component Analysis Problem Formulation)
主成分分析(PCA)是最常见的降维算法。
在PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据
都投射到该向量上时,我们希望投射平均均方误差能尽可能地小。方向向量是一个经过原点
的向量,而投射误差是从特征向量向该方向向量作垂线的长度。

下面给出主成分分析问题的描述:
问题是要将
吴恩达机器学习笔记49-主成分分析问题(Principal Component Analysis Problem Formulation)的更多相关文章
- 吴恩达机器学习笔记19-过拟合的问题(The Problem of Overfitting)
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致 ...
- [吴恩达机器学习笔记]14降维3-4PCA算法原理
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.3主成分分析原理Proncipal Component Analysis Problem Formulation 主成分分析( ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA)
主要内容: 一.降维与PCA 二.PCA算法过程 三.PCA之恢复 四.如何选取维数K 五.PCA的作用与适用场合 一.降维与PCA 1.所谓降维,就是将数据由原来的n个特征(feature)缩减为k ...
- [吴恩达机器学习笔记]14降维5-7重建压缩表示/主成分数量选取/PCA应用误区
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 ...
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
随机推荐
- VBA实现表单自动编号
效果:每次提交或刷新标段,表单案指定格式实现自动编号.如当天日期加数字编号的格式 即 2019年2月3日产生的第一张表单产生的编号格式为20190203-001 以此类推第二张表单编号为2019020 ...
- MySQL索引优化步骤总结
在项目使用mysql过程中,随着系统的运行,发现一些慢查询,在这里总结一下mysql索引优化步骤 1.开发过程优化 开发过程中对业务表中查询sql分析sql执行计划(尤其是业务流水表),主要是查看sq ...
- docker 删除所有none的镜像
docker images|grep none|awk '{print $3}'|xargs docker rmi
- 颜色16进制转为RGB格式
<script> 2 function getRGB(str){ var arr = str.split(""); var myred = arr[1]+arr[2]; ...
- Oracle 开机自动启动设置
步骤: 1:查看ORACLE_HOME是否设置 $ echo $ORACLE_HOME /u01/app/oracle/product//dbhome_1 2:执行dbstart 数据库自带启动脚本 ...
- Numpy 矩阵库(Matrix)
Numpy 中包含了一个矩阵库 numpy.matlib, 该模块中的函数返回的是一个矩阵, 而不是 ndarray 对象. 一个 m * n de 矩阵是一个 有 m 行(row) n 列(colu ...
- linux学习第十七天 (Linux就该这么学)
今天12月14日学习比较少点,等了一会,主要讲了squid代理,1,正向代理 2反向代理 正向代表分为:标准的正向代理,透明的正向代理 ,这个比较实用, 还讲了RHCE考试的中的内容 iscsi 是 ...
- apache ab 结果Failed requests探究
Failed requests: 537 (Connect: 0, Receive: 3, Length: 268, Exceptions: 266) Receive:当客户端connect成功后,并 ...
- 【机器学习】主成分分析法 PCA (I)
主成分分析算法是最常见的降维算法,在PCA中,我们要做的是找到一个方向向量,然后我们把所有的数都投影到该向量上,使得投影的误差尽可能的小.投影误差就是特征向量到投影向量之间所需要移动的距离. PCA的 ...
- Mysql Navicat连接
mysql -u root ip; 1.use mysql; 2.alter user 'root'@'localhost' identified with mysql_native_password ...