洛谷 P1484 种树
题目描述
cyrcyr今天在种树,他在一条直线上挖了n个坑。这n个坑都可以种树,但为了保证每一棵树都有充足的养料,cyrcyr不会在相邻的两个坑中种树。而且由于cyrcyr的树种不够,他至多会种k棵树。假设cyrcyr有某种神能力,能预知自己在某个坑种树的获利会是多少(可能为负),请你帮助他计算出他的最大获利。
输入输出格式
输入格式:
第一行,两个正整数n,k。
第二行,n个正整数,第i个数表示在直线上从左往右数第i个坑种树的获利。
输出格式:
输出1个数,表示cyrcyr种树的最大获利。
输入输出样例
说明
对于20%的数据,n<=20。
对于50%的数据,n<=6000。
对于100%的数据,n<=500000,k<=n/2,在一个地方种树获利的绝对值在1000000以内。
好像是堆的固定套路,首先肯定是每次取最大的正数,但是可能有差错,如70,100,80,如果只取两个,显然是150。
这时就需要撤回操作,即每弹出一个数时,将一个值为左右两边数的值减去本身加入堆,如果这个被选,就相当于撤回,选了旁边的两个数。
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int N=;
int n,k,l[N],r[N];
long long ans;
bool inq[N];
struct node
{
int id;
long long v;
bool operator <(node c)const
{
return v<c.v;
}
}a[N],t;
priority_queue<node>q;
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i].v);
a[i].id=i;
q.push(a[i]);
l[i]=i-;
r[i]=i+;
}
while(k--)
{
while(inq[q.top().id])
q.pop();
if(q.top().v<=)
break;
t=q.top();
q.pop();
ans+=t.v;
inq[l[t.id]]=inq[r[t.id]]=;
a[t.id].v=t.v=a[l[t.id]].v+a[r[t.id]].v-t.v;
l[t.id]=l[l[t.id]],r[t.id]=r[r[t.id]];
r[l[t.id]]=t.id,l[r[t.id]]=t.id;
q.push(t);
}
printf("%lld\n",ans);
return ;
}
洛谷 P1484 种树的更多相关文章
- 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...
- [洛谷P1484] 种树
题目类型:堆+贪心 传送门:>Here< 题意:有\(N\)个坑,每个坑可以种树,且获利\(a[i]\)(可以为负).任何相邻两个坑里不能都种树,问在最多种\(K\)棵树的前提下的最大获利 ...
- 洛谷 P1484 种树 题解
题面 这是一道标准的带反悔贪心: 利用大根堆来维护最大值: 当选择了num[i]后,反悔了,反之选择选了num[i-1]和num[i+1]时获利便增加了num[i-1]+num[i+1]-num[i] ...
- 洛谷 P1484 种树(优先队列,贪心,链表)
传送门 解题思路 第一眼的贪心策略:每次都选最大的. 但是——不正确! 因为选了第i个树,第i-1和i-1棵树就不能选了.所以,要有一个反悔操作. 选了第i个后,我们就把a[i]的值更新为a[l[i] ...
- Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化
https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...
- 洛谷P1250种树(贪心)
题目描述 一条街的一边有几座房子.因为环保原因居民想要在路边种些树.路边的地区被分割成块,并被编号成1..N.每个部分为一个单位尺寸大小并最多可种一棵树.每个居民想在门前种些树并指定了三个号码B,E, ...
- Java实现洛谷P1250 种树 (暴力)
P1250 种树 输入输出样例 输入 9 4 1 4 2 4 6 2 8 9 2 3 5 2 输出 5 PS: 我种最少的树,意味着我的树要最多的被利用,意味着,我的树要尽可能的靠中间种, 也就是我把 ...
- HDU 1384 Intervals &洛谷[P1250]种树
差分约束 差分约束的裸题,关键在于如何建图 我们可以把题目中给出的区间端点作为图上的点,此处应注意,由于区间中被标记的点的个数满足区间加法,这里与前缀和类似,对于区间[L..R]来说,我们加入一条从L ...
- 题解——洛谷P1250 种树(差分约束)
一道看一眼就知道差分约束的题目 但是最短路spfa的时候注意松弛条件是 if(dis[u]+w[i]<dis[v[i]]) dis[v[i]]=dis[u]+w[i]; 不能写成 if(dis[ ...
随机推荐
- .net ElasticSearch-Sql 扩展类【原创】
官方提供的是java sdk,并支持jdbc方式的查询结果输出;但是却没有.net sdk的支持. 开发 ElasticSearch-Sql 第三方开源项目的.net sdk,未来集成入bsf框架.( ...
- 生成ssh公钥
部分内容参考:http://git.mydoc.io/?t=154712 1.在电脑桌面上右键,选择git Base here 2.生成ssh公钥 ssh-keygen -t rsa -C" ...
- developer的996,需要谁来拯救
不为996辩护,但向奋斗者致敬! 随着996.icu愈演愈烈,不仅是国际友人发文问候,连国内互联网的大佬都被卷进风波,整理下大致思路如下: 马云:因为有自己想要实现的目标,因为有奔头,所以我们努力工作 ...
- java----牛客练习
1. 形式参数就是函数定义时设定的参数.例如函数头 int min(int x,int y,int z) 中 x,y,z 就是形参.实际参数是调用函数时所使用的实际的参数. 真正被传递的是实参 ...
- [LeetCode] Department Highest Salary -- 数据库知识(mysql)
184. Department Highest Salary The Employee table holds all employees. Every employee has an Id, a s ...
- Stochastic Optimization of PCA with Capped MSG
目录 Problem Matrix Stochastic Gradient 算法(MSG) 步骤二(单次迭代) 单步SVD \(project()\)算法 \(rounding()\) 从这里回溯到此 ...
- ibatis实战之插入数据(自动生成主键)
ibatis实战之插入数据(自动生成主键) --------- 如果你将数据库设计为使用自动生成的主键,就可以使用ibatis的<selectKey>元素(该元素是<insert&g ...
- KubeCon CloudNativeCon China 2019
KubeCon CloudNativeCon China 2019 - LF Asia, LLChttps://events.linuxfoundation.cn/events/kubecon-clo ...
- Eclipse支持文件UTF-8编码
Eclipse修改编码格式_百度经验https://jingyan.baidu.com/article/2009576193ee38cb0721b416.html 这篇最棒 如何为eclipse中的文 ...
- Oracle 用户管理与权限分配
用户管理是系统管理员最基本的任务之一,用户想要连接数据库并且使用相应的系统资源就必须是系统的合法用户且具有对应的权限. 1 创建用户 default tablespace default_tables ...