Consider a real LTI system with a WSS process $x(t)$ as input and WSS process $y(t)$ as output. Base on the WSS correlation properties,we get these equations

$\begin{align*}
&Time-Domain  &:&R_{yy}(\tau) &= h(\tau)*h(-\tau)*R_{xx}(\tau)\\
&Frequency-Domain &:&S_{yy}(j\omega) &= H(j\omega)H^*(j\omega)S_{xx}(j\omega)
\end{align*}$

The way we get $x(t)$ from white noise is no different. Let the input be a white noise with PSD $W_{xx}(j\omega)=1$,which means that its auto-correlation is $\delta$. Then the system can be seen to be a modeling filter denoted by $m(t)$ in time-domain and $M_{xx}(j\omega)$ in frequency-domain.

This can be summarized as the following equations

$\begin{align*}
&Time-Domain  &:&R_{xx}(\tau) &= m_{xx}(\tau)*m_{xx}(-\tau)\\
&Frequency-Domain &:&S_{xx}(j\omega) &= M_{xx}(j\omega)M_{xx}^*(j\omega)
\end{align*}$

Now, to think of a system which is the cascade of the filter $m_{xx}(\tau)$ and $m_{xx}(-\tau)$.

The filter $m_{xx}(\tau)$ can be decomposed into the sum of an even part $m_e(\tau)$, and an odd part $m_o(\tau)$

$m_{xx}(\tau) = m_e(\tau)+m_o(\tau)$

where

$\begin{align*}
m_e(\tau)&= \frac{1}{2}(m_{xx}(\tau)+m_{xx}(-\tau))\\
m_o(\tau)&= \frac{1}{2}(m_{xx}(\tau)-m_{xx}(-\tau))\\
\end{align*}$

If the filter $m_{xx}(\tau)$ is causal, in order that $m_{xx}(\tau)=0$ for $\tau<0$, we require that

$m_o(\tau) = \left\{\begin{matrix}
m_e(\tau), &\tau >0 \\
-m_e(\tau), &\tau<0
\end{matrix}\right.\ =sgn(\tau)m_e(\tau)$

Then the causal impulse response may be written in terms of the even function alone

$\begin{align*}
&m_{xx}(\tau) &= m_e(\tau)+sgn(\tau)m_e(\tau)\\
&m_{xx}(-\tau) &= m_e(\tau)-sgn(\tau)m_e(\tau)
\end{align*}$

For example

In the frequency domain, the frequency response function $M_{xx}(j\omega)$ can also be expressed in terms of the even function alone

$\begin{align*}
M_{xx}(j\omega) &= \mathcal{F}\Big\{m_e(\tau)\Big\}+\mathcal{F}\Big\{sgn(\tau)m_e(\tau)\Big\}\\
&= \mathcal{F}\Big\{m_e(\tau)\Big\}+\frac{1}{2\pi}\mathcal{F}\Big\{sgn(\tau)\Big\}\otimes \mathcal{F}\Big\{m_e(\tau)\Big\}\qquad convolution\ theorem\\
&= M_e(j\omega) + j\left[\frac{1}{\pi\omega}\otimes M_e(j\omega) \right]\\
&= M_e(j\omega) + j\widehat{M}_e(j\omega) \qquad \widehat{M}_e(j\omega)\ means\ Hilbert\ Transform\ of\ M_e(j\omega)
\end{align*}$

The frequency response function $M_{xx}^*(j\omega)$ can be derived with the same argument.

$\displaystyle{M_{xx}^*(j\omega) = M_e(j\omega) - j\widehat{M}_e(j\omega)}$

Thus

$\begin{align*}
S_{xx}(j\omega)&=M_{xx}(j\omega)M_{xx}^*(j\omega)\\
&=\Big\{M_e(j\omega)+j\widehat{M}_e(j\omega)\Big\}\Big\{M_e(j\omega)-j\widehat{M}_e(j\omega)\Big\}\\
&=M_e^2(j\omega)+\widehat{M}_e^2(j\omega)
\end{align*}$

Back to the WSS process, $S_{xx}(j\omega)$ is the PSD of $x(t)$. For real WSS process, the PSD should meet 3 condictions:even, real, non-negative. These condictions can be easily varified on $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$.

  1. $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is real, because it is the sum of square
  2. $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is non-negative, because it is the sum of square
  3. The first term is the square of FT of real even function, so that $M_e(j\omega)$ is real and even. The second term is the Hilbert transform of the real even function $M_e(j\omega)$. According to the Hilbert transform duality, $\widehat{M}_e(j\omega)$ is odd, which means that $\widehat{M}_e^2(j\omega)$ is even. With these understanding, it is evident that $M_e^2(j\omega)+\widehat{M}_e^2(j\omega)$ is even.

Reference :

MIT Open course 2.161 Signal Processing: Continuous and Discrete: Determining a System's Causality from its Frequency Response

Alan V. Oppenheim: Signals, Systems and Inference, Chapter 11: Wiener Filtering

WSS Process On Causal LTI System的更多相关文章

  1. Create process in UNIX like system

    In UNIX, as we’ve seen, each process is identified by its process identifier, which is a unique inte ...

  2. Linux利器 strace [看出process呼叫哪個system call]

    Linux利器 strace strace常用来跟踪进程执行时的系统调用和所接收的信号. 在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必 ...

  3. Wiener Filter

    假设分别有两个WSS process:$x[n]$,$y[n]$,这两个process之间存在某种关系,并且我们也了解这种关系.现在我们手头上有process $x[n]$,目的是要设计一个LTI系统 ...

  4. LTI系统对WSS Processes的作用

    本文主要专注讨论LTI系统对WSS Process的影响.WSS Process的主要特性有mean以及correlation,其中correlation特性在滤波器设计,信号检测,信号预测以及系统识 ...

  5. Power Spectral Density

    对于一个特定的信号来说,有时域与频域两个表达形式,时域表现的是信号随时间的变化,频域表现的是信号在不同频率上的分量.在信号处理中,通常会对信号进行傅里叶变换得到该信号的频域表示,从而得到信号在频域上的 ...

  6. System.Diagnostics.Process.Star的用法

    System.Diagnostics.Process.Start(); 能做什么呢?它主要有以下几个功能: 1.打开某个链接网址(弹窗). 2.定位打开某个文件目录. 3.打开系统特殊文件夹,如“控制 ...

  7. System.Diagnostics.Process 测试案例

    1.System.Diagnostics.Process 执行exe文件 创建项目,编译成功后,然后把要运行的exe文件拷贝到该项目的运行工作目录下即可,代码如下: using System; usi ...

  8. Unable to extract 64-bitimage. Run Process Explorer from a writeable directory

    Unable to extract 64-bitimage. Run Process Explorer from a writeable directory When we run Process E ...

  9. Linux Process VS Thread VS LWP

    Process program program==code+data; 一个进程可以对应多个程序,一个程序也可以变成多个进程.程序可以作为一种软件资源长期保存,以文件的形式存放在硬盘 process: ...

随机推荐

  1. Feature Extractor[content]

    0. AlexNet 1. VGG VGG网络相对来说,结构简单,通俗易懂,作者通过分析2013年imagenet的比赛的最好模型,并发现感受野还是小的好,然后再加上<network in ne ...

  2. Java 执行远程主机shell命令代码

    pom文件: <dependency> <groupId>org.jvnet.hudson</groupId> <artifactId>ganymed- ...

  3. ML.NET 示例:聚类之鸢尾花

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  4. Linq to XML操作XML文件

    LINQ的类型 在MSDN官方文件中,LINQ分为几种类型: . LINQ to Objects(或称LINQ to Collection),这是LINQ的基本功能,针对集合对象进行查询处理,包括基本 ...

  5. 使用 OpenSSL 创建私有 CA:1 根证书

    OpenSSL 创建私有 CA 三部曲:使用 OpenSSL 创建私有 CA:1 根证书使用 OpenSSL 创建私有 CA:2 中间证书使用 OpenSSL 创建私有 CA:3 用户证书 OpenS ...

  6. 05 Django REST Framework 分页

    01-分页模式 rest framework中提供了三种分页模式: from rest_framework.pagination import PageNumberPagination, LimitO ...

  7. Python Revisited Day 03 (组合数据类型)

    目录 第三章 组合数据类型 3.1 序列类型 3.1.1 元组 3.1.2 命名的元组 (collections.nametuple()) 3.1.3 列表 (查询有关函数点这) 3.1.4 列表内涵 ...

  8. Python—json模块

    用于序列化的两个模块 json,用于字符串 和 python数据类型间进行转换 pickle,用于python特有的类型 和 python的数据类型间进行转换 Json模块提供了四个功能:dumps. ...

  9. 培训班课程课时及费用管理系统V3.0,适合钢琴培训班、艺术培训班等

    联系QQ 564955427. ACM3.02 文件下载                    还有: 预收课时版 特点: 1. 适合主要业务是一对一课程和部分集体课培训的中小培训班(非连锁管理).考 ...

  10. 提取PPT文件中的Vba ProjectStg Compressed Atom。Extract PPT VBA Compress Stream

    http://msdn.microsoft.com/en-us/library/cc313106(v=office.12).aspx  微软文档 PartI ********************* ...