https://www.luogu.org/problemnew/show/P2765

看到这一题第一眼想到:这不是二分最大流吗,后来发现还有一种更快的方法。

首先如果知道要放多少个球求最少的柱子,很显然是一道最小点路径覆盖的题,将一个点拆成u,v两个点,u和S相连,v和T相连,之后的有向边i,就用ui和vj相连即可。

但是这题首先不知道有多少个球,所以考虑依次加入点以及和这个点相关的边,然后在残余网络上跑新的最大流,如果可以跑出流量来意味着这个点成功在现有的柱子上按排上了,如果跑不出来说明按排不上,需要重新开一根柱子放这个点。

直到跑到答案k的时候,柱子数超过了n,要的答案就是k - 1,至于方案,只要在最后的残余网络图上面搜索一下每个点的前驱即可。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
int read(){int x = ,f = ;char c = getchar();while (c<'' || c>''){if (c == '-') f = -;c = getchar();}
while (c >= ''&&c <= ''){x = x * + c - '';c = getchar();}return x*f;}
const double eps = 1e-;
const int maxn = ;
const int maxm = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,K;
int a[maxn];
struct Edge{
int to,next,cap,flow;
Edge(){}
Edge(int to,int next,int cap,int flow):to(to),next(next),cap(cap),flow(flow){}
}edge[maxm * ];
int head[maxn * ],dis[maxn * ],pre[maxn * ],nxt[maxn * ],vis[maxn * ];
int n,s,tot,t;
void init(int N,int S,int T){
n = N;s = S;t = T;
for(int i = ; i <= n ; i ++) head[i] = -;
tot = ;
}
void add(int u,int v,int w){
edge[tot] = Edge(v,head[u],w,);
head[u] = tot++;
edge[tot] = Edge(u,head[v],,);
head[v] = tot++;
}
bool BFS(){
for(int i = ; i <= n; i ++) dis[i] = -;
queue<int>Q;
dis[s] = ; Q.push(s);
while(!Q.empty()){
int u = Q.front(); Q.pop();
for(int i = head[u]; ~i ; i = edge[i].next){
int v = edge[i].to;
if(~dis[v] || edge[i].cap <= edge[i].flow) continue;
dis[v] = dis[u] + ;
Q.push(v);
}
}
return ~dis[t];
}
int dfs(int u,int a){
if(u == t || !a) return a;
int flow = ;
for(int &i = pre[u]; ~i ; i = edge[i].next){
int v = edge[i].to;
if(dis[u] + != dis[v]) continue;
int f = dfs(v,min(a,edge[i].cap - edge[i].flow));
if(!f) continue;
a -= f; flow += f;
edge[i].flow += f;
edge[i ^ ].flow -= f;
}
return flow;
}
int maxflow(){
int flow = ;
while(BFS()){
for(int i = ; i <= n ; i ++) pre[i] = head[i];
flow += dfs(s,INF);
}
return flow;
}
void search(int t){
for(int i = ; i <= t; i ++){
for(int j = head[i]; ~j ; j = edge[j].next){
int v = edge[j].to;
if(v == s) continue;
if(edge[j].flow){
nxt[i] = v - maxn;
vis[v - maxn] = ;
}
}
}
for(int i = ; i <= t; i ++){
if(!vis[i]){
for(int j = i; j; j = nxt[j]){
printf("%d ",j);
}
puts("");
}
}
}
int main(){
Sca(N);
for(int i = ; i <= ; i ++) a[i] = i * i;
int S = ,T = ;
init(,S,T);
int num = ,k;
int cnt = ;
for(k = ;num <= N; k ++){
while(k + k > a[cnt + ]) cnt++;
add(S,k,);
add(k + maxn,T,);
for(int i = cnt ; i >= ; i --){
if(a[i] - k <= ) break;
add(a[i] - k,k + maxn,);
}
if(!maxflow()) num++;
}
k-=; num--;
Pri(k);
search(k);
return ;
}

洛谷P2765魔术球问题 最小路径覆盖的更多相关文章

  1. luogu P2765 魔术球问题 (最小路径覆盖)

    大意:给定n根柱子, 依次放入1,2,3,...的球, 同一根柱子相邻两个球和为完全平方数, 求最多放多少个球. 对和为平方数的点连边, 就相当于求DAG上最小路径覆盖. #include <i ...

  2. 洛谷 P2765 魔术球问题 (dinic求最大流,最小边覆盖)

    P2765 魔术球问题 题目描述 «问题描述: 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为1,2,3,...的球. (1)每次只能在某根柱子的最上面放球. (2)在同一根柱子中,任何2 ...

  3. 洛谷 P2765 魔术球问题 解题报告

    P2765 魔术球问题 题目描述 问题描述: 假设有\(n\)根柱子,现要按下述规则在这\(n\)根柱子中依次放入编号为\(1,2,3,\dots\)的球. \((1)\) 每次只能在某根柱子的最上面 ...

  4. 洛谷 [P2765] 魔术球问题

    贪心做法 每次尽可能选择已经放过球的柱子 #include <iostream> #include <cstdio> #include <cstring> #inc ...

  5. [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

    #6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

  6. 洛谷P2765 魔术球问题(最大流)

    传送门 %%%KSkun大佬 话说明明是网络流……这题竟然还有打表找规律和纯贪心AC的……都是神犇啊…… 来说一下如何建图.首先把每一个点拆成$X_i$和$Y_i$,然后$S$向$X_i$连一条容量为 ...

  7. 洛谷P2765 魔术球问题(贪心 最大流)

    题意 已经很简洁了吧. 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为1,2,3,...的球. (1)每次只能在某根柱子的最上面放球. (2)在同一根柱子中,任何2个相邻球的编号之和为完全 ...

  8. 洛谷P2765 魔术球问题

    题目链接:https://www.luogu.org/problemnew/show/P2765 知识点: 最大流 解题思路: 本题所有边的容量均为 \(1\). 从 \(1\) 开始加入数字,将这个 ...

  9. 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)

    题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...

随机推荐

  1. caffe网络中屏蔽某一层的输出Silence层

    屏蔽label输出 layer { name: "silence0" type: "Silence" bottom: "label" pha ...

  2. Xtoken

    “我希望有一种模式,利用群体的智慧让最好的想法总能够脱颖而出”. 博弈模型 背景 本文为NEO社区理事会秘书长陶荣祺在全球创业周区块链创新与发展论坛上的主题演讲<Xtoken代观社区驱动群体智慧 ...

  3. micro-fusion & macro-fusion

    micro-fusion 随着技术的发展,CPU内部指令处理单元(execution unit)以及端口(port)增多,在Pentium 4的时候,发出到Execution Unit的μops的th ...

  4. Jquery实现检测用户输入用户名和密码不能为空

    要求 1.用户名和密码为空点击登录时提示相应的提示 2.获取用户名输入框时,错误提示清除 思路 1.创建1个input-text标签和1个input-password标签,1个input-botton ...

  5. scrapy 登陆知乎

    参考 https://github.com/zkqiang/Zhihu-Login # -*- coding: utf-8 -*- import scrapy import time import r ...

  6. MT【277】华中科技大学理科实验班选拔之三次方程

    (2015华中科技大学理科实验班选拔)已知三次方程$x^3+ax^2+bx+x=0$有三个实数根.(1)若三个实根为$x_1,x_2,x_3$,且$x_1\le x_2\le x_3,a,b$为常数, ...

  7. 【HDU - 5845】Best Division(xor-trie、01字典树、dp)

    BUPT2017 wintertraining(15) #7E 题意 把数组A划分为k个区间,每个区间不超过L长度,每一个区间异或和之和为S.现在求:S不超过X,区间个数的最大值. 且A是这样给你的: ...

  8. 【hjmmm网络流24题补全计划】

    本文食用方式 按ABC--分层叙述思路 可以看完一步有思路后自行思考 飞行员配对问题 题目链接 这可能是24题里最水的一道吧... 很显然分成两个集合 左外籍飞行员 右皇家飞行员 跑二分图最大匹配 输 ...

  9. NOIP经典基础模板总结

    date: 20180820 spj: 距离NOIP还有81天 目录 STL模板: priority_queue 的用法:重载<,struct cmpqueue 的用法 stack 的用法vec ...

  10. 【原】本地仓库推送到远程仓库:fatal: refusing to merge unrelated histories

    最近,在操作git的时候,遇到各种问题,下面总结一下. 最开始,我不是先把远程仓库拉取到本地 ,而是直接在本地先创建一个仓库,再git remote add添加远程仓库. 当然,gitee官方还是有操 ...