原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2219.html

题目传送门 - BZOJ2219

题意

  求同余方程 $x^A\equiv B \pmod{C}$ 的解的个数,其中 $C$ 为一个奇数。

  $1\leq A,B\leq 10^9,1\leq \lfloor C/2 \rfloor \leq 5\times 10^8$

题解

UPD(2018-09-10):

  详见数论总结。

  传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-System.html

代码

#include <bits/stdc++.h>
using namespace std;
const int N=100005;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
int pcnt,f[N],Prime[N];
void Get_Prime(int n){
memset(f,0,sizeof f);
pcnt=0;
for (int i=2;i<=n;i++){
if (f[i])
continue;
Prime[++pcnt]=i;
for (int j=i+i;j<=n;j+=i)
f[j]=1;
}
}
void Divide(int x,int *p,int *q,int &cnt){
cnt=0;
for (int i=1;i<=pcnt&&Prime[i]*Prime[i]<=x;i++){
if (x%Prime[i])
continue;
p[++cnt]=Prime[i],q[cnt]=0;
while (x%p[cnt]==0)
x/=p[cnt],q[cnt]++;
}
if (x>1)
p[++cnt]=x,q[cnt]=1;
}
int Pow(int x,int y,int mod){
int ans=1;
for (;y;y>>=1,x=1LL*x*x%mod)
if (y&1)
ans=1LL*ans*x%mod;
return ans;
}
int Pow(int x,int y){
return Pow(x,y,2e9);
}
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int Fac[50],Fac_cnt=0;
bool Get_g_Check(int P,int C,int x){
int phi=Pow(P,C-1)*(P-1),pw=Pow(P,C);
if (C>1&&Pow(x,phi/P,pw)==1)
return 0;
for (int i=1;i<=Fac_cnt;i++)
if (Pow(x,phi/Fac[i],pw)==1)
return 0;
return 1;
}
int Get_g(int P,int C){
int v=P-1;
Fac_cnt=0;
for (int i=1;i<=pcnt&&Prime[i]*Prime[i]<=v;i++)
if (v%Prime[i]==0){
Fac[++Fac_cnt]=Prime[i];
while (v%Prime[i]==0)
v/=Prime[i];
}
if (v>1)
Fac[++Fac_cnt]=v;
for (int i=2;;i++)
if (Get_g_Check(P,C,i))
return i;
return -1;
}
struct hash_map{
static const int Ti=233,mod=1<<16;
int cnt,k[mod+1],v[mod+1],nxt[mod+1],fst[mod+1];
int Hash(int x){
int v=x&(mod-1);
return v==0?mod:v;
}
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void update(int x,int a){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x){
v[p]=a;
return;
}
k[++cnt]=x,nxt[cnt]=fst[y],fst[y]=cnt,v[cnt]=a;
return;
}
int find(int x){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x)
return v[p];
return 0;
}
int &operator [] (int x){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x)
return v[p];
k[++cnt]=x,nxt[cnt]=fst[y],fst[y]=cnt;
return v[cnt]=0;
}
}Map;
int BSGS(int A,int B,int P){
int M=max((int)(0.8*sqrt(1.0*P)),1),AM=Pow(A,M,P);
Map.clear();
for (int b=0,pw=B;b<M;b++,pw=1LL*pw*A%P)
Map.update(pw,b+1);
for (int a=M,pw=AM;a-M<P;a+=M,pw=1LL*pw*AM%P){
int v=Map.find(pw);
if (v)
return a-(v-1);
}
return -1;
}
int RHD(int A,int B,int P,int C){
int g=Get_g(P,C);
int t=BSGS(g,B,Pow(P,C));
int mod=(P-1)*Pow(P,C-1);
int GCD=gcd(mod,gcd(A,t));
return gcd(A,mod)>GCD?0:GCD;
}
int solve(int A,int B,int P,int C){
int pw=Pow(P,C),Phi=(P-1)*Pow(P,C-1);
B%=pw;
if (B==0)
return Pow(P,C-((C+A-1)/A));
int g=gcd(B,pw),Q=0;
B/=g;
while (g>1)
g/=P,Q++;
return Pow(P,Q-Q/A)*((Q%A)?0:RHD(A,B,P,C-Q));
}
int main(){
Get_Prime(1e5);
int T=read();
while (T--){
int A=read(),B=read(),P=2*read()+1;
int cnt,p[50],q[50];
Divide(P,p,q,cnt);
int ans=1;
for (int i=1;i<=cnt;i++)
ans*=solve(A,B,p[i],q[i]);
printf("%d\n",ans);
}
return 0;
}

  

BZOJ2219 数论之神 数论 中国剩余定理 原根 BSGS的更多相关文章

  1. 51Nod1123 X^A Mod B 数论 中国剩余定理 原根 BSGS

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1123.html 题目传送门 - 51Nod1123 题意 $T$ 组数据. 给定 $A,B,C$,求 ...

  2. BZOJ2219数论之神——BSGS+中国剩余定理+原根与指标+欧拉定理+exgcd

    题目描述 在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出 ...

  3. 【BZOJ】【2219】数论之神

    中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yu ...

  4. bzoj2219: 数论之神

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  5. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  6. 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)

    F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format: ...

  7. 中国剩余定理(CRT)与欧拉函数[数论]

    中国剩余定理 ——!x^n+y^n=z^n 想必大家都听过同余方程这种玩意,但是可能对于中国剩余定理有诸多不解,作为一个MOer&OIer,在此具体说明. 对于同余方程: x≡c1(mod m ...

  8. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  9. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

随机推荐

  1. js 测试性能

    console.time('querySelector');for(var i=0; i<1000; i++){document.querySelector('body');}console.t ...

  2. python基础--管理目录与文件

    1) 文件夹 os.listdir() #显示文件夹下所有文件 os.getcwd() #获取当前工作目录 os.chdir() #切换目录 os.mkdir() #建立目录 os.path.exis ...

  3. html跳转指定位置-利用锚点

    比如我现在 a.html 的时候,我想跳转到 b.html ,并且是 b.html 的某一个位置,用 <a href=>, a.html里: <a href="b.html ...

  4. 分布式系统的一致性协议之 2PC 和 3PC

    在分布式系统领域,有一个理论,对于分布式系统的设计影响非常大,那就是 CAP 理论,即对于一个分布式系统而言,它是无法同时满足 Consistency(强一致性).Availability(可用性) ...

  5. iOS 10 申请隐私权限的一些常用选项

    Privacy - Photo Library Usage Description                               访问相册   Privacy - Camera Usag ...

  6. WinSCP安装与使用

      WinSCP 是一个 Windows 环境下使用的 SSH(Source Shell)的开源图形化 SFTP(SSH File Transfer Protocol) 客户端.同时支持 SCP(So ...

  7. 访问 Confluence 6 的计划任务配置

    希望访问 Confluence 计划任务配置界面: 进入  > 基本配置(General Configuration) > 计划任务(Scheduled Jobs) 所有的计划任务将会按照 ...

  8. mongo数据库的各种查询语句示例

    左边是mongodb查询语句,右边是sql语句.对照着用,挺方便. db.users.find() select * from users db.users.find({"age" ...

  9. vue element-UI 升级报错Cannot find module "element-ui/lib/theme-default/index.css"

    饿了么 用之前的版本 有些组件跟api 不一样了所以更新了最新的版本,发现 报一堆错误 主要错误是这个 Cannot find module "element-ui/lib/theme-de ...

  10. Python基础知识之大杂烩

    一.range 和 xrange 的区别 xrange 与 range 基本上都是在循环的时候用,两者的用法完全相同.所不同的是xrange生成的是一个生成器,而range生成的是一个list对象. ...