题目链接

思路

首先可以通过二分图染色找到奇环和一部分偶环。这个比较简单

但是还有一种偶环容易忽略。

如图(别问我为啥没节点4)

第一次可以找到1-2-3-1)这个奇环,第二次可以找到(3-5-6-3)这个奇环。但是(1-2-3-5-6-3-1)这个偶数环就被忽略了。

再一种情况

如图,我们可以找到(1-2-3-4-5-1)这个奇环,也可以找到(3-4-5-6-7-3这个奇环),但是忽略了(1-2-3-7-6-5-1)这个偶环。

可以证明,只要两个奇数中间有相交部分,那么一定存在一个偶环。因为假设相交部分有偶数条边(如上图),又因为两个环都是奇环,所以每个奇环都会剩下奇数条边。加起来刚好是偶数条边。同样,如果中间部分由奇数条边,那么每个奇环还会剩下偶数条边,加起来刚好也是偶数条边。所以只要能找到两个相交的奇环,那么一定存在一个偶环。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
typedef long long ll;
const int N=100000+100,M=N*3;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c<='9'&&c>='0') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int n,fa[N],ans[3],head[N],ejs,col[N],ji[N];
struct node {
int nxt,v;
}e[M];
void add(int u,int v) {
e[++ejs].v=v;e[ejs].nxt=head[u];head[u]=ejs;
}
void init() {
ans[2]=ans[1]=0;
memset(head,0,sizeof(head));
ejs=0;
memset(col,-1,sizeof(col));
memset(ji,0,sizeof(ji));
memset(fa,0,sizeof(fa));
n=read();int m=read();
for(int i=1;i<=m;++i) {
int u=read(),v=read();
add(u,v);add(v,u);
}
}
int Jump(int u,int v) {//标记为奇环 并判断相交
for(;u!=v&&u;u = fa[u]) {
if(ji[u]) return 1;
ji[u] = 1;
}
return 0;
}
void dfs(int u) {
for(int i=head[u]; i;i=e[i].nxt) {
int v = e[i].v;
if(v == fa[u]) continue;
if(col[v] == -1) {
col[v] = col[u]^1;//二分图染色
fa[v] = u;
dfs(v);
}
else {
if(col[v] == col[u]) {
ans[1] = 1;
if(Jump(u,v)) ans[2] = 1;//如果两个奇环有相交部分,那么就有偶环
}
else ans[2] = 1;
}
}
}
void solve() {
for(int i=1;i<=n; ++i) {
if(col[i] == -1) {
col[i] = 0;
dfs(i);
}
}
if(ans[1]) puts("YES");
else puts("NO");
if(ans[2]) puts("YES");
else puts("NO");
}
int main() {
int t=read();
while(t--) {
init();
solve();
}
return 0;
}

[hdu5215][Cycle]的更多相关文章

  1. 【杂题总汇】HDU-5215 Cycle

    ◆HDU-5215◆ Cycle 国庆节集训的第三天……讲图论,心情愉快……刷了一堆水题,不过也刷了一些有意思的题 +传送门+ HDU ▶ 题目 给出一个无向图(无自环,无重边),求该无向图中是否存在 ...

  2. HDU-5215 Cycle(边双/判奇偶环)

    题目 HDU-5215 Cycle 网上那个啥dfs的垃圾做法随便弄组数据已经hack掉了 做法 纯奇环偶环通过dfs树上,染色判断(由于偶环可能有两个奇环,通过一点相交,dfs树上并不能判完) 两环 ...

  3. HDU-5215 Cycle 无向图判奇环偶环

    题意:给一个无向图,判断这个图是否存在奇环和偶环. 解法:网上有一种只用dfs就能做的解法,但是我不太理解. 这里用的是比较复杂的.首先奇环很简单可以用二分图染色判断.问题是偶环怎么判断?这里我们想, ...

  4. 使用JSONObject.fromObject的时候出现“There is a cycle in the hierarchy”异常 的解决办法

    在使用JSONObject.fromObject的时候,出现“There is a cycle in the hierarchy”异常.   意思是出现了死循环,也就是Model之间有循环包含关系: ...

  5. JS案例之2——cycle元素轮播

    元素轮播效果是页面中经常会使用的一种效果.这个例子实现了通过元素的隐藏和显示来表现轮播效果.效果比较简单. 效果图如下: 源代码如下: <!DOCTYPE html> <html&g ...

  6. [LeetCode] Linked List Cycle II 单链表中的环之二

    Given a linked list, return the node where the cycle begins. If there is no cycle, return null. Foll ...

  7. [LeetCode] Linked List Cycle 单链表中的环

    Given a linked list, determine if it has a cycle in it. Follow up: Can you solve it without using ex ...

  8. [LintCode] Linked List Cycle 单链表中的环

    Given a linked list, determine if it has a cycle in it. ExampleGiven -21->10->4->5, tail co ...

  9. UVA11090 Going in Cycle!! [spfa负环]

    https://vjudge.net/problem/UVA-11090 平均权值最小的回路 为后面的做个铺垫 二分最小值,每条边权减去他,有负环说明有的回路平均权值小于他 spfa求负环的时候可以先 ...

随机推荐

  1. 工作效率提升之Eclipse篇(1):干掉烦人的xml文件的validation

    每次启动maven项目,都会有一堆烦人的xml文件的validation,一旦网络较慢,项目重新启动的时候,这些多余的验证纯属浪费时间. Eclipse上取消validation的方法: 1.菜单[W ...

  2. liunx 运维知识三部分

    一. 用户级用户组相关 二. 文件属性和链接知识及磁盘已满故障案例 三. 通配符 四. 特殊符号 五. 基础正则 六. 扩展正则 七. sed实践 八. awk实践

  3. from组件补充

    一.定义的规则 class TeacherForm(Form): #必须继承Form # 创建字段,本质上是正则表达式 username = fields.CharField( required=Tr ...

  4. maven 中的pom中的 dependencyManagement 和 dependencies

    参考:maven pom.xml 中 dependencyManagement和dependencies详解 现在的项目基本上都是使用多module来管理的,这就涉及到一个问题,多module之间如何 ...

  5. docker 列出每个容器的IP

    抄来的...找不到出处了.   常用方法有两种 docker inspect 容器ID | grep IPAddress 方法二 查看docker name: sudo docker inspect ...

  6. 三、ASP.NET Core 部署Linux

    预备工作 1.删除dotnet core sdk sudo yum erase libunwind libicu 2.删除链接 sudo rm -rf /usr/local/bin 3.sudo yu ...

  7. jq的$.each()方法

    jq的$.each()方法: 语法:jQuery.each(object, [callback]) 回调函数拥有两个参数:第一个为对象的成员或数组的索引,第二个为对应变量或内容.如果需要退出 each ...

  8. LDOOP设置关联后超出新起一页LinkNewPage

    关联打印的时候,top,left关联位置是相对于被关联打印项的偏移值,具体可查看本博客相关介绍博文:LODOP打印控件关联输出各内容 正常情况下,超文本超过打印项高度,或纸张高度会自动分页,如果超文本 ...

  9. over-relaxation

    逐次超松弛sor 参考1https://blog.csdn.net/lusongno1/article/details/68941137 有各种对比和程序 主要就是取了加权平均,没仔细看

  10. Javascript和Jquery语法对比总结

    目的 相信大家都知道jq是js的一个类库,是为了方便我们开发前端,但是笔者在刚开始学习js和jq时经常将两者的语法记混和混用,所以整理下两者实现相同功能之前的语法区别. 声明变量 javascript ...