An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

    

    

Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<= 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print "YES" if the tree is complete, or "NO" if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
typedef struct NODE{
struct NODE* lchild, *rchild;
int data, lev;
}node;
int N, cnt = ;
int height(node* root){
if(root == NULL)
return ;
else return root->lev;
}
void update(node* root){
root->lev = max(height(root->lchild), height(root->rchild)) + ;
}
void L(node* &root){
node* temp = root;
root = root->rchild;
temp->rchild = root->lchild;
root->lchild = temp;
update(temp);
update(root);
}
void R(node* &root){
node* temp = root;
root = root->lchild;
temp->lchild = root->rchild;
root->rchild = temp;
update(temp);
update(root);
}
void insert(node* &root, int x){
if(root == NULL){
root = new node;
root->lchild = NULL;
root->rchild = NULL;
root->data = x;
root->lev = ;
return;
}
if(x <= root->data){
insert(root->lchild, x);
update(root);
if(abs(height(root->lchild) - height(root->rchild)) == ){
if(height(root->lchild->lchild) - height(root->lchild->rchild) == ){
R(root);
}else if(height(root->lchild->lchild) - height(root->lchild->rchild) == -){
L(root->lchild);
R(root);
}
}
}else{
insert(root->rchild, x);
update(root);
if(abs(height(root->lchild) - height(root->rchild)) == ){
if(height(root->rchild->rchild) - height(root->rchild->lchild) == ){
L(root);
}else if(height(root->rchild->rchild) - height(root->rchild->lchild) == -){
R(root->rchild);
L(root);
}
}
}
} int levelOrder(node* root){
int tag = , prt = ;
queue<node*> Q;
Q.push(root);
while(Q.empty() == false){
node* temp = Q.front();
Q.pop();
cnt++;
if(temp == NULL){
if(cnt < N + )
tag = ;
}else{
prt++;
if(prt == N)
printf("%d\n", temp->data);
else printf("%d ", temp->data);
Q.push(temp->lchild);
Q.push(temp->rchild);
}
}
return tag;
}
int main(){
scanf("%d", &N);
int num;
node* root = NULL;
for(int i = ; i < N; i++){
scanf("%d", &num);
insert(root, num);
}
int isCom = levelOrder(root);
if(isCom == )
printf("YES\n");
else printf("NO\n");
cin >> N;
return ;
}

总结:

1、按插入顺序建立平衡二叉树,然后再判断该树是否是完全二叉树。

2、建立平衡二叉树: 在左子树插入后,先更新根节点高度,再求平衡因子。求平衡因子判断平衡应判断左减右是否等于2,而不是绝对值。

3、左旋右旋共三步。旋转完成之后必须更新temp和root的高度,由于temp会成为root的子树,所以先更新temp高度,再更新root。

4、判断完全二叉树: 将null节点也加入队列。设置计数器记录访问节点个数,当访问时遇到空节点看计数器是否大于N,如果否,则不是完全二叉树。

A1123. Is It a Complete AVL Tree的更多相关文章

  1. PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  2. PAT甲级——A1123 Is It a Complete AVL Tree【30】

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  3. PAT_A1123#Is It a Complete AVL Tree

    Source: PAT A1123 Is It a Complete AVL Tree (30 分) Description: An AVL tree is a self-balancing bina ...

  4. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  5. 1123 Is It a Complete AVL Tree

    1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...

  6. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. 1123 Is It a Complete AVL Tree(30 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  9. PAT 1123 Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. mysql数据库在linux上的不同登录方式和权限

    在我的上两篇博文里,一篇是安装,一篇是配置远程登录, 提君博客原创 >>提君博客原创  http://www.cnblogs.com/tijun/  << 所以我的mysql的 ...

  2. day 7-5 守护线程

    一. 守护线程 无论是进程还是线程,都遵循:守护进程(线程)会等待主进程(线程)运行完毕后被销毁. 需要强调的是:运行完毕并非终止运行. 1.对主进程来说,运行完毕指的是主进程代码运行完毕. 2.对主 ...

  3. python之路--面向对象-成员

    一 . 成员 在类中你能写的所有内容都是类的成员 class 类名: # 方法 def__init__(self, 参数1, 参数2...): # 属性变量 self.属性1 = 参数1 self.属 ...

  4. 集合之HashMap(含JDK1.8源码分析)

    一.前言 之前的List,讲了ArrayList.LinkedList,反映的是两种思想: (1)ArrayList以数组形式实现,顺序插入.查找快,插入.删除较慢 (2)LinkedList以链表形 ...

  5. 莫烦keras学习自修第二天【backend配置】

    keras的backend包括tensorflow和theano,tensorflow只能在macos和linux上运行,theano可以在windows,macos及linux上运行 1. 使用配置 ...

  6. 解析xml文件 selectSingleNode取不到节点

    今天在做批量生成XML的时候,碰到一个情况 解析xml文件 selectSingleNode一直返回NULL. XML的格式开头有一句这个<CE401Message xmlns="ht ...

  7. JQ和JS获取元素

    <ul>   <li>John</li> <li>Karl</li> <li>Brandon</li> </u ...

  8. codeforces492C

    Vanya and Exams CodeForces - 492C Vanya wants to pass n exams and get the academic scholarship. He w ...

  9. 11/1/2018模拟 Max

    题面 也就是说, 随机序列RMQ.(\(n \le 8388608\), \(m \le 8*10^6\)) 解法 我写了笛卡尔树+tarjan 然而听神仙说, 因为数据随机, 建完树暴力找lca就行 ...

  10. python数据类型知识整理

    python数据类型种类 int数字.bool布尔值.dict字典.tunple元组.set集合.list列表.字符串 int数字 #常用来进制转换 num = 11 #转化成2进制 bin_num ...