A1123. Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<= 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print "YES" if the tree is complete, or "NO" if not.
Sample Input 1:
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
Sample Input 2:
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
typedef struct NODE{
struct NODE* lchild, *rchild;
int data, lev;
}node;
int N, cnt = ;
int height(node* root){
if(root == NULL)
return ;
else return root->lev;
}
void update(node* root){
root->lev = max(height(root->lchild), height(root->rchild)) + ;
}
void L(node* &root){
node* temp = root;
root = root->rchild;
temp->rchild = root->lchild;
root->lchild = temp;
update(temp);
update(root);
}
void R(node* &root){
node* temp = root;
root = root->lchild;
temp->lchild = root->rchild;
root->rchild = temp;
update(temp);
update(root);
}
void insert(node* &root, int x){
if(root == NULL){
root = new node;
root->lchild = NULL;
root->rchild = NULL;
root->data = x;
root->lev = ;
return;
}
if(x <= root->data){
insert(root->lchild, x);
update(root);
if(abs(height(root->lchild) - height(root->rchild)) == ){
if(height(root->lchild->lchild) - height(root->lchild->rchild) == ){
R(root);
}else if(height(root->lchild->lchild) - height(root->lchild->rchild) == -){
L(root->lchild);
R(root);
}
}
}else{
insert(root->rchild, x);
update(root);
if(abs(height(root->lchild) - height(root->rchild)) == ){
if(height(root->rchild->rchild) - height(root->rchild->lchild) == ){
L(root);
}else if(height(root->rchild->rchild) - height(root->rchild->lchild) == -){
R(root->rchild);
L(root);
}
}
}
} int levelOrder(node* root){
int tag = , prt = ;
queue<node*> Q;
Q.push(root);
while(Q.empty() == false){
node* temp = Q.front();
Q.pop();
cnt++;
if(temp == NULL){
if(cnt < N + )
tag = ;
}else{
prt++;
if(prt == N)
printf("%d\n", temp->data);
else printf("%d ", temp->data);
Q.push(temp->lchild);
Q.push(temp->rchild);
}
}
return tag;
}
int main(){
scanf("%d", &N);
int num;
node* root = NULL;
for(int i = ; i < N; i++){
scanf("%d", &num);
insert(root, num);
}
int isCom = levelOrder(root);
if(isCom == )
printf("YES\n");
else printf("NO\n");
cin >> N;
return ;
}
总结:
1、按插入顺序建立平衡二叉树,然后再判断该树是否是完全二叉树。
2、建立平衡二叉树: 在左子树插入后,先更新根节点高度,再求平衡因子。求平衡因子判断平衡应判断左减右是否等于2,而不是绝对值。
3、左旋右旋共三步。旋转完成之后必须更新temp和root的高度,由于temp会成为root的子树,所以先更新temp高度,再更新root。
4、判断完全二叉树: 将null节点也加入队列。设置计数器记录访问节点个数,当访问时遇到空节点看计数器是否大于N,如果否,则不是完全二叉树。
A1123. Is It a Complete AVL Tree的更多相关文章
- PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级——A1123 Is It a Complete AVL Tree【30】
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT_A1123#Is It a Complete AVL Tree
Source: PAT A1123 Is It a Complete AVL Tree (30 分) Description: An AVL tree is a self-balancing bina ...
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- 1123 Is It a Complete AVL Tree
1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- 1123 Is It a Complete AVL Tree(30 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- PAT 1123 Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
随机推荐
- Hbase表结构模型
- Java变量类型识别的3种方式
内容导览 反射方式,成员变量的类型判断 isInstance用法 利用泛型识别类型 测试类: package com.cxyapi.oo; import java.util.Date; import ...
- String、StringBuffer、StringBuilder三种类型的一点比较
简要记一点 以运行速度来说: StringBuilder>StringBuffer>String 以线程安全来说: StringBuilder线程不安全,而StringBuffer线程安全 ...
- jaxp的dom方式操作(查找、添加、修改、删除、遍历节点)
package cn.itcast.jaxptest; import java.io.IOException; import javax.xml.parsers.DocumentBuilder;imp ...
- Windows Server 2012 添加角色时出现 failed to open runspace pool
先把所有的Windows Server 2012的更新更新了.再来添加服务器角色.就不会再出现 The Server Manager WinRM plug-in might be corrupted ...
- 学习 Spring (十七) Spring 对 AspectJ 的支持 (完结)
Spring入门篇 学习笔记 @AspectJ 的风格类似纯 java 注解的普通 java 类 Spring 可以使用 AspectJ 来做切入点解析 AOP 的运行时仍旧是纯的 Spring AO ...
- Vue混合mixins
前面的话 本文将详细介绍Vue混合mixins 概述 混合 (mixins) 是一种分发 Vue 组件中可复用功能的非常灵活的方式.混合对象可以包含任意组件选项.以组件使用混合对象时,所有混合对象的选 ...
- luogu3702-[SDOI2017]序列计数
Description Alice想要得到一个长度为nn的序列,序列中的数都是不超过mm的正整数,而且这nn个数的和是pp的倍数. Alice还希望,这nn个数中,至少有一个数是质数. Alice想知 ...
- 【数学建模】day11-典型相关分析
这与主成分分析有点相似. 0. 基本思想主成分分析(PCA)是把原始有相关性变量,线性组合出无关的变量(投影),以利用主成分变量进行更加有效的分析.而典型相关分析(CCA)的思想是: 分析自变量组 X ...
- .net core Include问题
本文章为原创文章,转载请注明出处 当时不知道为什么这样写,可能是突然间脑子停止了转动,既然犯过这样的错误,就记录下来吧 错误示例 ).Include(a=>a.User).Select(a =& ...