如下图所示(回归的过拟合问题):如果机器学习得到的回归为下图中的直线则是比较好的结果,但是如果进一步控制减少误差,导致机器学习到了下图中的曲线,则100%正确的学习了训练数据,看似较好,但是如果换成另外一批数据,则不能较好的反应数据,造成过大的误差,这就是过拟合问题

再看下图这是分类问题的过拟合问题

2. 正规化方法

(1)l1正规化:使用权重绝对值和的方式惩罚误差

(2)l2正规化:使用权重平方和的方式惩罚误差

3. 代码实现:

from __future__ import print_function
import theano
from sklearn.datasets import load_boston
import theano.tensor as T
import numpy as np
import matplotlib.pyplot as plt

class Layer(object):
    def __init__(self, inputs, in_size, out_size, activation_function=None):
        self.W = theano.shared(np.random.normal(0, 1, (in_size, out_size)))
        self.b = theano.shared(np.zeros((out_size, )) + 0.1)
        self.Wx_plus_b = T.dot(inputs, self.W) + self.b
        self.activation_function = activation_function
        if activation_function is None:
            self.outputs = self.Wx_plus_b
        else:
            self.outputs = self.activation_function(self.Wx_plus_b)

def minmax_normalization(data):   # 对输入数据进行预处理,处理成大于0,小于1的范围
    xs_max = np.max(data, axis=0)
    xs_min = np.min(data, axis=0)
    xs = (1 - 0) * (data - xs_min) / (xs_max - xs_min) + 0
    return xs
# 获取波士顿房价数据
np.random.seed(100)
x_data = load_boston().data
# minmax normalization, rescale the inputs
x_data = minmax_normalization(x_data)
y_data = load_boston().target[:, np.newaxis]
# 进行交叉验证,将数据的一部分数据作为训练数据,另一部分作废测试数据
# cross validation, train test data split
x_train, y_train = x_data[:400], y_data[:400]
x_test, y_test = x_data[400:], y_data[400:]

x = T.dmatrix("x")
y = T.dmatrix("y")

l1 = Layer(x, 13, 50, T.tanh)
l2 = Layer(l1.outputs, 50, 1, None)

# the way to compute cost
cost = T.mean(T.square(l2.outputs - y))      # without regularization
# cost = T.mean(T.square(l2.outputs - y)) + 0.1 * ((l1.W ** 2).sum() + (l2.W ** 2).sum())  # with l2 regularization
# cost = T.mean(T.square(l2.outputs - y)) + 0.1 * (abs(l1.W).sum() + abs(l2.W).sum())  # with l1 regularization
gW1, gb1, gW2, gb2 = T.grad(cost, [l1.W, l1.b, l2.W, l2.b])

learning_rate = 0.01
train = theano.function(
    inputs=[x, y],
    updates=[(l1.W, l1.W - learning_rate * gW1),
             (l1.b, l1.b - learning_rate * gb1),
             (l2.W, l2.W - learning_rate * gW2),
             (l2.b, l2.b - learning_rate * gb2)])

compute_cost = theano.function(inputs=[x, y], outputs=cost)

# record cost
train_err_list = []
test_err_list = []
learning_time = []
for i in range(1000):
    train(x_train, y_train)
    if i % 10 == 0:
        # record cost
        train_err_list.append(compute_cost(x_train, y_train))
        test_err_list.append(compute_cost(x_test, y_test))
        learning_time.append(i)

# plot cost history
plt.plot(learning_time, train_err_list, 'r-')
plt.plot(learning_time, test_err_list, 'b--')
plt.show()

莫烦theano学习自修第九天【过拟合问题与正规化】的更多相关文章

  1. 莫烦theano学习自修第十天【保存神经网络及加载神经网络】

    1. 为何保存神经网络 保存神经网络指的是保存神经网络的权重W及偏置b,权重W,和偏置b本身是一个列表,将这两个列表的值写到列表或者字典的数据结构中,使用pickle的数据结构将列表或者字典写入到文件 ...

  2. 莫烦theano学习自修第八天【分类问题】

    1. 代码实现 from __future__ import print_function import numpy as np import theano import theano.tensor ...

  3. 莫烦theano学习自修第七天【回归结果可视化】

    1.代码实现 from __future__ import print_function import theano import theano.tensor as T import numpy as ...

  4. 莫烦theano学习自修第六天【回归】

    1. 代码实现 from __future__ import print_function import theano import theano.tensor as T import numpy a ...

  5. 莫烦theano学习自修第五天【定义神经层】

    1. 代码如下: #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ import numpy as np import theano.tensor as T ...

  6. 莫烦theano学习自修第三天【共享变量】

    1. 代码实现 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ import numpy as np import theano.tensor as T i ...

  7. 莫烦theano学习自修第二天【激励函数】

    1. 代码如下: #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ import numpy as np import theano.tensor as T ...

  8. 莫烦theano学习自修第一天【常量和矩阵的运算】

    1. 代码实现如下: #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ # 导入numpy模块,因为numpy是常用的计算模块 import numpy as ...

  9. 莫烦sklearn学习自修第九天【过拟合问题处理】

    1. 过拟合问题可以通过调整机器学习的参数来完成,比如sklearn中通过调节gamma参数,将训练损失和测试损失降到最低 2. 代码实现(显示gamma参数对训练损失和测试损失的影响) from _ ...

随机推荐

  1. P1256 显示图像(广搜)

    题意:略 思路,先说如何建树吧.广搜很简单,就是一个队列+一个检测数组.但是本质还是对搜索树的构建. 这里的构建就是一个节点有4个孩子,每个孩子代表4个方向就构成了一个搜索树.根据题目的就离公式转化一 ...

  2. 【window】Windows10下为PHP安装redis扩展

    操作: 步骤1:D:\wamp\bin\apache\apache2.4.9\bin/php.ini中添加 ; php_redis extension=php_igbinary.dll extensi ...

  3. pytorch例子学习——TRAINING A CLASSIFIER

    参考:https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar1 ...

  4. Vim 安装 YouCompleteMe

    Vim 下的自动补全,最好的工具莫过于 YouCompleteMe,官方文档在这里 http://valloric.github.io/YouCompleteMe/ 安装稍显复杂,以下记录我的过程. ...

  5. 初学Python—列表和元组

    一.什么是列表 列表是一系列数据的集合 二.列表的引用 首先定义一个列表 names=["alex","bob","alice"," ...

  6. 根据考试成绩输出对应的礼物,90分以上爸爸给买电脑,80分以上爸爸给买手机, 60分以上爸爸请吃一顿大餐,60分以下爸爸给买学习资料。 要求:该题使用多重if完成

    package com.Summer_0417.cn; import java.util.Scanner; /** * @author Summer * 根据考试成绩输出对应的礼物, * 90分以上爸 ...

  7. 用Python实现大文件分割

    python代码如下: import sys,os kilobytes = 1024 megabytes = kilobytes*1000 chunksize = int(200*megabytes) ...

  8. wpf、winform仿QQ靠边隐藏

    先说下下面的代码和demo是wpf的,如果winform要用,改动不大的. 实现思路: 通过定时刷新鼠标位置 和 窗体坐标 进行计算 来控制窗体的隐藏 显示 代码都有详细的注释 //窗体状态 true ...

  9. MangoDB高级应用

    MongoDB高级应用 Author:SimpleWu 聚合 聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). ...

  10. python_超级基础

    初识计算机 CPU 计算机的大脑.中央处理单元,主要负责数据运算及计算,是运算计算中心. 存储器 内存 临时存储数据,供CPU运算使用. 优点: 读取速度快. 缺点: 容量小,成本高,断电即消失. 硬 ...