【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]

传送门:

【题目描述】

给出 \(n\) 个圆的圆心坐标 \((x,y)\) 和半径 \(r\),求它们覆盖的总面积。

【输入】

第一行一个整数 \(n\),表示一共有 \(n\) 个圆,接下来 \(n\) 行每行三个整数 \(x,y,r\) 。

【输出】

答案保留三位小数。

【样例】

样例输入:
3
0 0 1
0 0 1
100 100 1 样例输出:
6.283

【数据范围】

\(100 \%:\) \(1 \leqslant n \leqslant 1000,\) \(|x|,|y| \leqslant 1000,\) \(0 \leqslant r \leqslant 1000\)

【分析】

【计算几何全家桶】

圆面积并的板题。

【前置芝士】

自适应辛普森积分 (乱搞)。

虽然不知道积分是什么东西,但老师说只要背了公式而且会用它求面积就可以了:\(ans(l,r)=\frac{(r-l)(F_l+4F_{mid}+F_r)}{6}\) 。

当计算平面图形面积时,\(F_Y\) 就是直线 \(y=Y\) 穿过图形的部分的长度。

例:一个底为 \(a\),高为 \(h\) 的三角形面积可表示为: \(S=\frac{h*(a+4*\frac{a}{2}+0)}{6}=\frac{a*h}{2}\) 。如下图,\(r-l=h,F_l=a,F_{mid}=\frac{a}{2},F_r=0\):

(另外,当计算立体图形体积时,\(F_Y\) 就是平面 \(z=Y\) 穿过图形的部分的面积。例:一个半径为 \(r\) 的球体积可表示为: \(V=\frac{2r*(0+4\pi r^2+0)}{6}=\frac{4\pi r^3}{3}\) )

但并不是所有的图形都可以这样子做,比如在求圆面积时就会出问题(设半径为 \(r\)): \(S=\frac{2r*(0+4*2r+0)}{6}=\frac{4 r^2}{3} \neq \pi r^2\) 。

这时候就需要用到自适应辛普森法:分别用公式出 \(ans(l,mid)\) 和 \(ans(mid,r)\),若二者之和与 \(ans(l,r)\) 的差值小于 \(eps\),则返回 \(ans(l,r)\),否则递归求解 \((l,mid)\) 与 \((mid,r)\) 再加起来。

代码如下:

#define LD double
#define Rd register LD
inline LD F(Rd Y){return ???;}//视情况而定
inline LD Simpson(Rd L,Rd R){return (R-L)*(F(L)+4.0*F((L+R)*0.5)+F(R))/6.0;}//套公式
inline LD sakura(Rd L,Rd R,Rd now){//求解ans(L,R)
Rd mid=(L+R)*0.5,FL=Simpson(L,mid),FR=Simpson(mid,R);//先用公式求左右两边
if(!dcmp(now-FL-FR))return now;//满足精度要求
return sakura(L,mid,FL)+sakura(mid,R,FR);//递归求解并求和
}

【问题求解】

回到这道题,求出最靠边上的两端点 \(Y_{min},Y_{max}\) 直接递归求解即可,至于上面的 \(F\) 函数可以暴力枚举所有圆求交弦,然后对其排序做线段覆盖。

注意精度要调好,\(\text{Bzoj}\) 需要 \(1e\!-\!13\),\(\text{SPOJ}\) 需要 \(1e\!-\!7\) 。

时间复杂度: \(O( nlogn \times\) 玄学 \()\) 。其中 “玄学” 为 \(F\) 函数调用次数。

【优化】

只是单纯地求解 \((Y_{min},Y_{max})\) 会被 \(\text{Bzoj}\) 的 【变态毒瘤数据】 卡掉,\(\text{SPOJ}\) 也过不了。

为什么?

如果有 \(1\) 个孤零零的圆在最上面,\(999\) 个圆堆在最下面,最后算出来误差会非常大,所以要分段处理,即将所有圆划分为若干个联通块分别求解(可以将每个圆的上下端点连起来跑线段覆盖),这样子误差会小一些。

此时【变态毒瘤数据】成功地算了出来,但花了 \(30s\),考虑对 \(F\) 函数进行记忆化,再经过一波卡常,本机 \(10.6s\),交上去刚好卡过。

【再优化】

那么,连 【八聚氧】 都救不了的 \(\text{SPOJ}\) 又该怎么办呢?

提前预处理出大圆包含小圆的情况(把被包含的小圆删掉),大大减小 \(nlogn\) 部分的消耗。

呼呼,终于过了

【Code】

#include<algorithm>
#include<cstdio>
#include<cmath>
#include<map>
#define LD double
#define LL long long
#define Re register int
#define Rd register LD
#define Vector Point
using namespace std;
const int N=2003;
const LD eps=1e-13;
int n,m;map<LD,LD>vis;
inline int dcmp(Rd a){return a<-eps?-1:(a>eps?1:0);}
struct Point{
LD x,y;Point(LD X=0,LD Y=0){x=X,y=Y;}
inline void in(){scanf("%lf%lf",&x,&y);}
};
struct Segment{
LD L,R;Segment(LD l=0,LD r=0){L=l,R=r;}
inline bool operator<(Segment O)const{return L!=O.L?L<O.L:R<O.R;}
}Seg[N];
struct Circle{
LD x,y,r,L,R,D,U;
inline void in(){scanf("%lf%lf%lf",&x,&y,&r),L=x-r,R=x+r,D=y-r,U=y+r;}
inline bool operator<(Circle B)const{return D<B.D;}//按下端点排序
}C[N],C_[N];
inline bool cmp(Circle A,Circle B){return A.r<B.r;}//按半径排序
inline LD dis(Circle A,Circle B){return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));}
inline LD SS(Rd x){return x*x;}
inline LD F(Rd Y){
if(vis[Y])return vis[Y];//记忆化
Re t=0;Rd ans=0;
for(Re i=1;i<=n;++i)
if(dcmp(Y-C[i].D)>0&&dcmp(Y-C[i].U)<0){//如果直线穿过了该圆
Rd tmp=sqrt(SS(C[i].r)-SS(C[i].y-Y));//勾股定理求交弦
if(dcmp(tmp)>0)Seg[++t]=Segment(C[i].x-tmp,C[i].x+tmp);
}
if(!t)return 0.0;
sort(Seg+1,Seg+t+1);
for(Re i=1,j;i<=t;i=j+1){
Rd L=Seg[i].L,R=Seg[i].R;j=i;
while(j<t&&Seg[j+1].L<=R)++j,R=max(R,Seg[j].R);
ans+=R-L;
}
return vis[Y]=ans;
}
inline LD Simpson(Rd L,Rd R){return (R-L)*(F(L)+4.0*F((L+R)*0.5)+F(R))/6.0;}//【辛普森公式】
inline LD sakura(Rd L,Rd R,Rd now){//【自适应】
Rd mid=(L+R)*0.5,FL=Simpson(L,mid),FR=Simpson(mid,R);
if(!dcmp(now-FL-FR))return now;
return sakura(L,mid,FL)+sakura(mid,R,FR);
}
LD ans;
int main(){
// freopen("789.txt","r",stdin);
scanf("%d",&m);
for(Re i=1;i<=m;++i)C_[i].in();
sort(C_+1,C_+m+1,cmp),C[++n]=C_[m];//按半径大小排序
for(Re i=m-1;i>=1;--i){//【大圆吃小圆】从大圆向小圆枚举
Re flag=1;
for(Re j=1;j<=n&&flag;++j)
if(dcmp(C_[i].r-C[j].r+dis(C_[i],C[j]))<=0)flag=0;//小r+大r <= dis,则说明小圆C_[i]被包含了在了C[j]以内
if(flag)C[++n]=C_[i];//C_[i]没有被大圆包含
}
sort(C+1,C+n+1);
for(Re i=1,j;i<=n;i=j+1){//【分段处理】每个联通块单独处理
Rd D=C[i].D,U=C[i].U;j=i;
while(j<n&&C[j+1].D<=U)++j,U=max(U,C[j].U);
ans+=sakura(D,U,Simpson(D,U));
}
printf("%.3lf",ans);
}

【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]的更多相关文章

  1. SPOJ CIRU - The area of the union of circles (圆的面积并)

    CIRU - The area of the union of circles no tags  You are given N circles and expected to calculate t ...

  2. SPOJ CIRU The area of the union of circles

    You are given N circles and expected to calculate the area of the union of the circles ! Input The f ...

  3. SPOJ CIRU The area of the union of circles (计算几何)

    题意:求 m 个圆的并的面积. 析:就是一个板子题,还有要注意圆的半径为0的情况. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024 ...

  4. SPOJ CIRU The area of the union of circles ——Simpson积分

    [题目分析] 圆的面积并. 直接Simpson积分,(但是有计算几何的解法,留着flag). simpson积分,如果圆出现了不连续的情况,是很容易出事情的.(脑补一下) 但是没有什么办法,本来就是一 ...

  5. SPOJ 8073 The area of the union of circles (圆并入门)

    Sphere Online Judge (SPOJ) - Problem CIRU [求圆并的若干种算法,圆并扩展算法]_AekdyCoin的空间_百度空间 参考AekdyCoin的圆并算法解释,根据 ...

  6. [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并

    [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并 题目大意: 求\(n(n\le1000)\)个圆的面积并. 思路: 对于一个\( ...

  7. SPOJ 8073 The area of the union of circles(计算几何の圆并)(CIRU)

    Description You are given N circles and expected to calculate the area of the union of the circles ! ...

  8. SPOJ CIRU SPOJ VCIRCLE 圆的面积并问题

    SPOJ VCIRCLE SPOJ CIRU 两道题都是给出若干圆 就面积并,数据规模和精度要求不同. 求圆面积并有两种常见的方法,一种是Simpson积分,另一种是几何法. 在这里给出几何方法. P ...

  9. Maximal Area Quadrilateral CodeForces - 340B || 三点坐标求三角形面积

    Maximal Area Quadrilateral CodeForces - 340B 三点坐标求三角形面积(可以带正负,表示向量/点的不同相对位置): http://www.cnblogs.com ...

随机推荐

  1. SpringBoot WebSocket 消息交互

    1. Websocket原理 Websocket协议本质上是一个基于TCP的独立协议,能够在浏览器和服务器之间建立双向连接,以基于消息的机制,赋予浏览器和服务器间实时通信能力. WebSocket资源 ...

  2. 状态模式(Established close)

    状态模式(Established close) 引子 铁扇公主:以前陪我看月亮的时候,叫人家小甜甜,现在新人胜旧人了,叫人家牛夫人! 定义 Allow an object to alter its b ...

  3. ArrayList和LinkedList 的联系和区别

    ArrayList和LinkedList 的联系和区别 1.联系: 都实现了List接口 有序 不唯一(可重复) 2.区别 ArrayList LinkedList

  4. CDR简单制作透明字体【6·18特惠倒计时3天!】

    将图片剪贴到文字中是平面设计常用的一种处理方法之一,一般是将图片置入到该文字,且图片的外轮廓是沿着文字的形状剪贴的,这种处理手法被广泛应用于排版设计中.本教程结合蒙版功能加阴影效果做出特殊的视觉效果. ...

  5. vulnhub: DC 3

    通过nmap扫描,只开放了80端口,并且该web服务是基于Joomla搭建: root@kali:~# nmap -A 192.168.74.140 Starting Nmap 7.80 ( http ...

  6. 语音识别2 -- Listen,Attend,and Spell (LAS)

    LAS是Listen(Encoder),Attend,和Spell(Decoder)的简称 第一个步骤Listen(Encoder) listen的作用是输入一段语音信号,输出一段向量,去掉语音中的杂 ...

  7. iOS 索引列 使用详解

    做苹果开发的朋友在地区列表可能会遇到在页面的右侧有一列类似与导航的索引列,这次有机会遇到了,细细研究了一下,原来没有想象中的高达上,只需要简单的几步就能做出自己的索引列.,关注我的博客的朋友可能会对这 ...

  8. 知识点:C语言进阶提高篇,自定义数据类型:枚举

    一.枚举的概念 枚举是C语言中的一种基本数据类型,并不是构造类型,它可以用于声明一组常数.当一个变量有几个固定的可能取值时,可以将这个变量定义为枚举类型.比如,你可以用一个枚举类型的变量来表示季节,因 ...

  9. 【mq读书笔记】mq消息存储

    comitlog文件 ConsumerQueue文件 IndexFile文件 RocketMQ将所有主题的消息存储在同一个文件中,确保消息发送时顺序写文件. 为了提高消息消费的效率RocketMQ引入 ...

  10. Mellanox 4036配置

    1.前言 内置factory-default 会重置所有参数到出厂设置. 内置reboot.拔电源就是重启. 外置reset就是重置芯片中数据,不会恢复到出厂设置. 2.感受下恢复出厂过程 4036- ...