import pandas as pd
import numpy as np # 读取全部数据,使用默认索引
data = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx') # 修改异常值
data.loc[data.交易额 > 3000,'交易额'] = 3000
data.loc[data.交易额 < 200,'交易额'] = 200 # 删除重复值
data.drop_duplicates(inplace = True)
# inplace 表示对源数据也进行修改
# 填充缺失值
data['交易额'].fillna(data['交易额'].mean(),inplace = True) # 使用交叉表得到每人在各柜台交易额的平均值
data_group = pd.crosstab(data.姓名,data.柜台,data.交易额,aggfunc = 'mean').apply(round)
# 绘制柱状图
data_group.plot(kind = 'bar')
# <matplotlib.axes._subplots.AxesSubplot object at 0x000001D681607888> # 数据的合并
data1 = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx')
data2 = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx',sheet_name = 'Sheet2')
df1 = data1[:3]
'''
工号 姓名 日期 时段 交易额 柜台
0 1001 张三 20190301 9:00-14:00 2000 化妆品
1 1002 李四 20190301 14:00-21:00 1800 化妆品
2 1003 王五 20190301 9:00-14:00 800 食品
'''
df2 = data2[:4]
'''
工号 姓名 日期 时段 交易额 柜台
0 1006 钱八 20190301 9:00-14:00 850 蔬菜水果
1 1001 张三 20190302 14:00-21:00 600 蔬菜水果
2 1001 张三 20190302 9:00-14:00 1300 化妆品
3 1002 李四 20190302 14:00-21:00 1500 化妆品
'''
# 使用 concat 连接两个相同结构的 DataFrame 对象
df3 = pd.concat([df1,df2])
'''
工号 姓名 日期 时段 交易额 柜台
0 1001 张三 20190301 9:00-14:00 2000 化妆品
1 1002 李四 20190301 14:00-21:00 1800 化妆品
2 1003 王五 20190301 9:00-14:00 800 食品
0 1006 钱八 20190301 9:00-14:00 850 蔬菜水果
1 1001 张三 20190302 14:00-21:00 600 蔬菜水果
2 1001 张三 20190302 9:00-14:00 1300 化妆品
3 1002 李四 20190302 14:00-21:00 1500 化妆品
'''
# 合并,忽略原来的索引 ignore_index
df4 = df3.append([df1,df2],ignore_index = True)
'''
工号 姓名 日期 时段 交易额 柜台
0 1001 张三 20190301 9:00-14:00 2000 化妆品
1 1002 李四 20190301 14:00-21:00 1800 化妆品
2 1003 王五 20190301 9:00-14:00 800 食品
3 1006 钱八 20190301 9:00-14:00 850 蔬菜水果
4 1001 张三 20190302 14:00-21:00 600 蔬菜水果
5 1001 张三 20190302 9:00-14:00 1300 化妆品
6 1002 李四 20190302 14:00-21:00 1500 化妆品
7 1001 张三 20190301 9:00-14:00 2000 化妆品
8 1002 李四 20190301 14:00-21:00 1800 化妆品
9 1003 王五 20190301 9:00-14:00 800 食品
10 1006 钱八 20190301 9:00-14:00 850 蔬菜水果
11 1001 张三 20190302 14:00-21:00 600 蔬菜水果
12 1001 张三 20190302 9:00-14:00 1300 化妆品
13 1002 李四 20190302 14:00-21:00 1500 化妆品
'''
# 按照列进行拆分
df5 = df4.loc[:,['姓名','柜台','交易额']]
# 查看前五条数据
df5[:5]
'''
姓名 柜台 交易额
0 张三 化妆品 2000
1 李四 化妆品 1800
2 王五 食品 800
3 钱八 蔬菜水果 850
4 张三 蔬菜水果 600
''' # 合并 merge 、 join
# 按照工号进行合并,随机查看 3 条数据
rows = np.random.randint(0,len(df5),3)
pd.merge(df4,df5).iloc[rows,:]
'''
工号 姓名 日期 时段 交易额 柜台
7 1002 李四 20190301 14:00-21:00 1800 化妆品
4 1002 李四 20190301 14:00-21:00 1800 化妆品
10 1003 王五 20190301 9:00-14:00 800 食品
'''
# 按照工号进行合并,指定其他同名列的后缀
pd.merge(df1,df2,on = '工号',suffixes = ['_x','_y']).iloc[:,:]
'''
工号 姓名_x 日期_x 时段_x ... 日期_y 时段_y 交易额_y 柜台_y
0 1001 张三 20190301 9:00-14:00 ... 20190302 14:00-21:00 600 蔬菜水果
1 1001 张三 20190301 9:00-14:00 ... 20190302 9:00-14:00 1300 化妆品
2 1002 李四 20190301 14:00-21:00 ... 20190302 14:00-21:00 1500 化妆品
'''
# 两个表都设置工号为索引 set_index
df2.set_index('工号').join(df3.set_index('工号'),lsuffix = '_x',rsuffix = '_y').iloc[:]
'''
姓名_x 日期_x 时段_x 交易额_x ... 日期_y 时段_y 交易额_y 柜台_y
工号 ...
1001 张三 20190302 14:00-21:00 600 ... 20190301 9:00-14:00 2000 化妆品
1001 张三 20190302 14:00-21:00 600 ... 20190302 14:00-21:00 600 蔬菜水果
1001 张三 20190302 14:00-21:00 600 ... 20190302 9:00-14:00 1300 化妆品
1001 张三 20190302 9:00-14:00 1300 ... 20190301 9:00-14:00 2000 化妆品
1001 张三 20190302 9:00-14:00 1300 ... 20190302 14:00-21:00 600 蔬菜水果
1001 张三 20190302 9:00-14:00 1300 ... 20190302 9:00-14:00 1300 化妆品
1002 李四 20190302 14:00-21:00 1500 ... 20190301 14:00-21:00 1800 化妆品
1002 李四 20190302 14:00-21:00 1500 ... 20190302 14:00-21:00 1500 化妆品
1006 钱八 20190301 9:00-14:00 850 ... 20190301 9:00-14:00 850 蔬菜水果 '''

2020-05-07

pandas_数据拆分与合并的更多相关文章

  1. Oracle_表数据拆分与合并

    参考文档: [1]http://blog.itpub.net/8858072/viewspace-426960/ [2]http://blog.csdn.net/mattlinsheep/articl ...

  2. (Sql Server)数据的拆分和合并

    (Sql Server)数据的拆分和合并 背景: 今天遇到了数据合并和拆分的问题,尝试了几种写法.但大致可分为两类:一.原始写法.二.Sql Server 2005之后支持的写法.第一种写法复杂而且效 ...

  3. 45.oracle表类型、数据拆分、表分区

    不要做一些没有意义的事情,就比如说你要离职并不打算吃回头草,离职理由中完全没有必要说明“领导的水平太渣,人品太差”此类的原因,而是“个人原因”,当然实在不批准辞职另说. oracle表类型 表的类型分 ...

  4. NDK学习笔记-文件的拆分与合并

    文件的拆分与合并在开发中经常会用到,上传或是下载的时候都有这样的运用 文件拆分的思路 将文件大小拆分为n个文件 那么,每个文件的大小就是等大小的 如果文件大小被n除不尽,那么就使用n+1个文件来拆分 ...

  5. spss-数据抽取-拆分与合并

    spss-数据抽取-拆分与合并 数据抽取也成为数据拆分,是指保留.抽取原数据表中某些字段.记录的部分信息,形成一个新字段.新纪录.分为:字段拆分和随机抽样两种方法. 一:字段拆分 如何提取" ...

  6. 【BIM】基于BIMFACE的空间拆分与合并

    BIMFACE中矩形空间拆分与合并 应用场景 在BIM运维场景中,空间同设备一样,作为一种资产被纳入运维管理体系,典型的应用场景例如商铺.防火分区等,这就涉及到空间的拆分和合并,在bimface中,已 ...

  7. 利用SQl对数据库实行数据拆分与组合

    利用SQl对数据库实行数据拆分与组合实现提供以下几种方案: 方法一: WITH CTE AS (SELECT A.Id,A.[Uid],UserName FROM (SELECT A.[id], RE ...

  8. pdf拆分与合并

    1.引用iTextSharp,用于拆分和合并pdf文件 using iTextSharp.text; using iTextSharp.text.pdf; 2.合并pdf //outMergeFile ...

  9. fasta文件拆分与合并

    Linux中fasta文件的拆分与合并 FASTA文件的拆分: (1)如果从一个文件a提取第11至20个序列存到另一个文件b: awk -v RS='>' 'NR>1{i++}i>= ...

随机推荐

  1. Spring Boot2.x 的Druid连接池配置[附带监控]

    父依赖[Spring Boot 2.1.x版本] <parent> <groupId>org.springframework.boot</groupId> < ...

  2. Android java.lang.NoClassDefFoundError:failed resolution of :Lorg/apache/http/ProtocolVersion

    问题是突然出现的,因为我走测试的时候没有问题,但是正式的时候就这样了,报错APP发生的样式是直接闪退.问题报错位置大概是Applicition类,因为这里基本是都是初始化第三方地方, 问题形成原因:可 ...

  3. CSS 3中-webkit-, -moz-, -o-, -ms-这些私有前缀的含义和兼容

    css3作为页面样式的表现语言,增加了很多新的属性,但是部分css3属性在一些浏览器上还处于试验阶段,所以为了有效的显示css3的样式,对应不同的浏览器内核需要不同的前缀声明,例如: -moz- :F ...

  4. angular入门--绑定字符串

    要使用angularjs,首先得下载并且在页面中调用它 先上源码 <html ng-app="app1"> <head> <meta name=&qu ...

  5. centos-docker安装及基本使用

    1.安装 1.安装之前 网络重启:service network restart 查看IP地址:ip addr 查看内核版本:uname -r 2.linux上安装docker 1.查看内核版本:un ...

  6. Redis哨兵集群创建脚本--v2

    1. 基础环境 操作系统版本  CentOS Linux release 7.6.1810 (Core) Docker 版本  19.03.11, build 42e35e61f3 Redis  版本 ...

  7. python 并发专题(二):python线程以及线程池相关以及实现

    一 多线程实现 线程模块 - 多线程主要的内容:直接进行多线程操作,线程同步,带队列的多线程: Python3 通过两个标准库 _thread 和 threading 提供对线程的支持. _threa ...

  8. 【五学x红小豆xRS】两边三地大联动-句型

    <第五共和国> Tohara LY Sara'm, Sabang Chua Setuk KS Kareh Moh Induree Junchi Chueh? 阁下!和这样的虫豸在一起,怎么 ...

  9. 开源 5 款超好用的数据库 GUI 带你玩转 MongoDB、Redis、SQL 数据库

    作者:HelloGitHub-*小鱼干 工欲善其事必先利其器,想要玩溜数据库,不妨去试试本文安利的 5 款开源的数据库管理工具.除了流行的 SQL 类数据库--MySQL.PostgreSQL 之外, ...

  10. Ethical Hacking - GAINING ACCESS(18)

    CLIENT SIDE ATTACKS Backdooring ANY file Combine backdoor with any file - Generic solution. Users ar ...