UPD:现在才发现本题是个传递闭包

题目内容

春天到了,HDU校园里开满了花,姹紫嫣红,非常美丽. 葱头是个爱花的人,看着校花校草竞相开放,漫步校园,心情也变得舒畅. 为了多看看这迷人的校园,葱头决定,每次上课都走不同的路线去教室,但是由于时间问题,每次只能经过\(k\)个地方,比方说,这次葱头决定经过2个地方,那他可以先去问鼎广场看看喷泉,再去教室,也可以先到体育场跑几圈,再到教室. 他非常想知道,从A 点恰好经过\(k\)个点到达B点的方案数,当然这个数有可能非常大,所以你只要输出它模上1000的余数就可以了. 你能帮帮他么?? 你可决定了葱头一天能看多少校花哦。

输入格式

输入数据有多组,每组的第一行是2个整数\(n,m\)(\(0 < n \le 20,m \le 100\)) 表示校园内共有\(n\)个点,为了方便起见,点从\(0\)到\(n-1\)编号,接着有\(m\)行,每行有两个整数$ s,t $(\(0\le s,t<n\)) 表示从\(s\)点能到\(t\)点,注意图是有向的.接着的一行是两个整数\(T\),表示有\(T\)组询问(\(1\le T\le 100\))。

接下来的\(T\)行,每行有三个整数$ A,B,k\(,表示问你从A点到B点恰好经过\)k\(个点的方案数(\)k < 20$),可以走重复边。如果不存在这样的走法,则输出\(0\)。

当\(n,m\)都为\(0\)的时候输入结束

输出格式

计算每次询问的方案数,由于走法很多,输出其对1000取模的结果

样例输入

(??)

1 2

2 8

样例输出

4

()()

思路

令\(Mat[i][j]=1\),表示从\(i\)到\(j\)连通,即\(i,j\)经过一个点到达的方案数为1。那么\(∑(M[i][k] + M[k][j])\),\(k∈(0, N-1)\), 就表示\(i,j\)经过两个点到达的方案数。即将矩阵\(Mat^n\)就可以求出\(i,j\)经过要求个数个点到达的方案数。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std;
const int mod=1000;
int T,n,m; struct Mat{
int mat[40][40];
Mat(){
memset(mat,0,sizeof(mat));
}
}; Mat mul(Mat A,Mat B){
Mat C;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
(C.mat[i][j]+=A.mat[i][k]*B.mat[k][j])%=mod;
}
}
}
return C;
} Mat qpow(Mat A,int k) {
Mat B;
for(int i=1;i<=n;i++)
B.mat[i][i]=1;
while(k){
if(k&1)
B=mul(B,A);
A=mul(A,A);
k>>=1;
}
return B;
} int main(){
int s,t;
while(1){
scanf("%d%d",&n,&m);
if(n==0&&m==0)return 0; Mat A,B;
while(m--){
scanf("%d%d",&s,&t);
A.mat[++s][++t]=1;//因为不想从0开始循环就+1了
} scanf("%d",&T);
while (T--){
int x,y,k;
scanf("%d%d%d",&x,&y,&k);
B=A;
B=qpow(A,k);
printf("%d\n",B.mat[++x][++y]);
}
}
return 0;
}

【传递闭包】HDU 2157 How many ways??的更多相关文章

  1. HDU 2157 How many ways?? 【矩阵经典8】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2157 How many ways?? Time Limit: 2000/1000 MS (Java/Ot ...

  2. HDU 2157 How many ways?? (邻接矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=2157 题意 : 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值   从这道题 ...

  3. HDU 2157 How many ways??(简单线性DP | | 矩阵快速幂)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2157 这道题目很多人的题解都是矩阵快速幂写的,矩阵快速幂倒是麻烦了许多了.先给DP的方法 dp[i][ ...

  4. HDU 2157 How many ways??:矩阵快速幂【i到j共经过k个节点的方法数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157 题解: 给你一个有向图,n个节点m条边,问你从i到j共经过k个节点的方法数(不算i点). 题解: ...

  5. Hdu 2157 How many ways??(DP||矩阵乘法)

    How many ways?? Time Limit:1000 MS Memory Limit: 32768 K Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, ...

  6. HDU 2157 How many ways?? 临接矩阵+快速幂

    Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, ...

  7. hdu 2157 How many ways?? ——矩阵十题第八题

    Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, ...

  8. HDU 2157 How many ways?【矩阵快速幂】

    题目 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线 ...

  9. HDU 2157 How many ways?? 题解

    题目 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线 ...

随机推荐

  1. node-vuecli 脚手架安装

    1. vuecli 简介 Vue CLI 致力于将 Vue 生态中的工具基础标准化 Vue CLI 是一个基于 vue.js 进行快速开发的完整系统,是一个全局安装的 npm包,基于webpack构建 ...

  2. 查看windows和linux下端口是否被占用

    1.windows cmd输入netstat -ano |findstr "端口号" 查看到1202端口被使用的进程PID是10692 输入tasklist |findstr 10 ...

  3. 数据库漏洞扫描工具scuba

    1.先下载安装scuba 参考地址  https://www.52pojie.cn/thread-702605-1-1.html 百度网盘下载地址: 链接:https://pan.baidu.com/ ...

  4. 用ajax获取后端数据,显示在前端,实现了基本计算器功能

    下午在看视频的时候,遇到一个问题:如何把后端 print_r或echo的数据显示在前端.百度了一下,说是用ajax,想着前一阵子学习了ajax,并且最近也想做一个计算器,于是就自己钻起来了. 计算器的 ...

  5. Linux高级命令进阶

    输出重定向 场景:一般命令的输出都会显示在终端中,有些时候需要将一些命令的执行结果想要保存到文件中进行后续的分析/统计,则这时候需要使用到的输出重定向技术. >:覆盖输出,会覆盖掉原先的文件内容 ...

  6. 代码检查工具 Sonar 安装&使用

    本文主要说明Sonar的安装方式并附上依赖安装包,本文目标只实现本地搭建测试的Sonar环境,以及本地的测试项目的非定制化扫描 本机测试环境:Win10-X64,.vs2017      依赖包: 1 ...

  7. 操作系统(AIX)双因素身份认证解决方案-中科恒伦CKEY DAS

      一.场景分析 操作系统是管理计算机硬件与软件资源的计算机程序,用于工作中的进程管理.存储管理.设备管理.文件管理.作业管理等,十分重要,安全等级极高! 二.问题分析 1.密码设置简单,非常容易被撞 ...

  8. 这10道springboot常见面试题你需要了解下

    ​ 1.什么是Spring Boot? 多年来,随着新功能的增加,spring变得越来越复杂.只需访问https://spring.io/projects页面,我们就会看到可以在我们的应用程序中使用的 ...

  9. 记一次Java获取本地摄像头(基于OpenCV)

    OpenCV官网下载地址(下载安装后,在安装目录可以找到动态链接库和OpenCv.jar) https://opencv.org/releases/ 安装完成后,这是我的安装目录 maven 依赖(这 ...

  10. tomcat在windows下安装

    1.下载地址:https://tomcat.apache.org/download-90.cgi Binary是编译好的,可以直接使用的版本: tar.gz,解压即可用: Source是源代码版本,需 ...