UPD:现在才发现本题是个传递闭包

题目内容

春天到了,HDU校园里开满了花,姹紫嫣红,非常美丽. 葱头是个爱花的人,看着校花校草竞相开放,漫步校园,心情也变得舒畅. 为了多看看这迷人的校园,葱头决定,每次上课都走不同的路线去教室,但是由于时间问题,每次只能经过\(k\)个地方,比方说,这次葱头决定经过2个地方,那他可以先去问鼎广场看看喷泉,再去教室,也可以先到体育场跑几圈,再到教室. 他非常想知道,从A 点恰好经过\(k\)个点到达B点的方案数,当然这个数有可能非常大,所以你只要输出它模上1000的余数就可以了. 你能帮帮他么?? 你可决定了葱头一天能看多少校花哦。

输入格式

输入数据有多组,每组的第一行是2个整数\(n,m\)(\(0 < n \le 20,m \le 100\)) 表示校园内共有\(n\)个点,为了方便起见,点从\(0\)到\(n-1\)编号,接着有\(m\)行,每行有两个整数$ s,t $(\(0\le s,t<n\)) 表示从\(s\)点能到\(t\)点,注意图是有向的.接着的一行是两个整数\(T\),表示有\(T\)组询问(\(1\le T\le 100\))。

接下来的\(T\)行,每行有三个整数$ A,B,k\(,表示问你从A点到B点恰好经过\)k\(个点的方案数(\)k < 20$),可以走重复边。如果不存在这样的走法,则输出\(0\)。

当\(n,m\)都为\(0\)的时候输入结束

输出格式

计算每次询问的方案数,由于走法很多,输出其对1000取模的结果

样例输入

(??)

1 2

2 8

样例输出

4

()()

思路

令\(Mat[i][j]=1\),表示从\(i\)到\(j\)连通,即\(i,j\)经过一个点到达的方案数为1。那么\(∑(M[i][k] + M[k][j])\),\(k∈(0, N-1)\), 就表示\(i,j\)经过两个点到达的方案数。即将矩阵\(Mat^n\)就可以求出\(i,j\)经过要求个数个点到达的方案数。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std;
const int mod=1000;
int T,n,m; struct Mat{
int mat[40][40];
Mat(){
memset(mat,0,sizeof(mat));
}
}; Mat mul(Mat A,Mat B){
Mat C;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
(C.mat[i][j]+=A.mat[i][k]*B.mat[k][j])%=mod;
}
}
}
return C;
} Mat qpow(Mat A,int k) {
Mat B;
for(int i=1;i<=n;i++)
B.mat[i][i]=1;
while(k){
if(k&1)
B=mul(B,A);
A=mul(A,A);
k>>=1;
}
return B;
} int main(){
int s,t;
while(1){
scanf("%d%d",&n,&m);
if(n==0&&m==0)return 0; Mat A,B;
while(m--){
scanf("%d%d",&s,&t);
A.mat[++s][++t]=1;//因为不想从0开始循环就+1了
} scanf("%d",&T);
while (T--){
int x,y,k;
scanf("%d%d%d",&x,&y,&k);
B=A;
B=qpow(A,k);
printf("%d\n",B.mat[++x][++y]);
}
}
return 0;
}

【传递闭包】HDU 2157 How many ways??的更多相关文章

  1. HDU 2157 How many ways?? 【矩阵经典8】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2157 How many ways?? Time Limit: 2000/1000 MS (Java/Ot ...

  2. HDU 2157 How many ways?? (邻接矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=2157 题意 : 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值   从这道题 ...

  3. HDU 2157 How many ways??(简单线性DP | | 矩阵快速幂)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2157 这道题目很多人的题解都是矩阵快速幂写的,矩阵快速幂倒是麻烦了许多了.先给DP的方法 dp[i][ ...

  4. HDU 2157 How many ways??:矩阵快速幂【i到j共经过k个节点的方法数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157 题解: 给你一个有向图,n个节点m条边,问你从i到j共经过k个节点的方法数(不算i点). 题解: ...

  5. Hdu 2157 How many ways??(DP||矩阵乘法)

    How many ways?? Time Limit:1000 MS Memory Limit: 32768 K Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, ...

  6. HDU 2157 How many ways?? 临接矩阵+快速幂

    Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, ...

  7. hdu 2157 How many ways?? ——矩阵十题第八题

    Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, ...

  8. HDU 2157 How many ways?【矩阵快速幂】

    题目 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线 ...

  9. HDU 2157 How many ways?? 题解

    题目 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线 ...

随机推荐

  1. asp.net中 使用Nginx 配置 IIS站点负载均衡

    这是一偏初学者入门的内容,发现有问题的地方,欢迎留言,一起学习,一起进步 本文主要记录一下在Windows平台中,IIS站点如何使用Nginx 做一个简单的负载均衡  一. 准备工作: 官网下载安装包 ...

  2. C/C++ 实现PE文件特征码识别

    PE文件就是我们常说的EXE可执行文件,针对文件特征的识别可以清晰的知道该程序是使用何种编程语言实现的,前提是要有特征库,PE特征识别有多种形式,第一种是静态识别,此方法就是只针对磁盘中文件的特征码字 ...

  3. python的logging模块及应用

    一.logging日志模块等级 常见log级别从高到低: CRITICAL >ERROR >WARNING >INFO >DEBUG,默认等级为WARNING,即>=WA ...

  4. Java读取excel 支持xls 和 xlsx格式

    1.工具类public class InExcelTool { //根据指定位置单独读取一个 public static String getContent(String file, int page ...

  5. Java垃圾回收System.gc()的理解

    System.gc()无法保证GC一定执行 在默认情况下,通过System.gc()或者Runtime.getRuntime().gc()的调用,会显式触发Full GC,同时对老年代和新生代进行回收 ...

  6. Typora基础使用

    Markdown学习 标题 三级标题 四级标题 字体 Hello,World! Hello,World! Hello,World! Hello,World! 引用 选择狂神说Java,走向人生巅峰 分 ...

  7. 一篇文章说清楚TDengine的FQDN

    TDengine2.0以后需要使用FQDN来进行访问.小朋友,你是否有很多小问号:什么是FQDN,为什么要配置FQDN,如何配置FQDN.我们今天来简单讲一下.心急的小伙伴,可以直接跳转到配置章节. ...

  8. java对象相等

    https://www.dutycode.com/post-140.html 简单来首,Object方法里的equals也是直接判断两个引用是否指向同一个地址,即引用同一个对象 public bool ...

  9. 5.Strom-事务型拓扑

  10. java中类的构造及其使用

    class Person{    // 属性       public String name;    public int age;    // 构造方法    public Person(){   ...