题意:

一个骰子,n个面,摇到每一个面的概率都一样。问你把每一个面都摇到至少一次需要摇多少次,求摇的期望次数

题解:

dp[i]:已经摇到i个面,还需要摇多少次才能摇到n个面的摇骰子的期望次数

因为我们只知道dp[n]的值,所以我们只能倒推,dp[n]=0(感觉大部分概率dp都是倒推~~~~)

dp[i]=i/n*dp[i]+(n-i)/ndp[i+1]+1

化简一下:

dp[i]=dp[i+1]+n/(n-i)

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn=1e3+10;
double dp[maxn];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
double n;
memset(dp,0,sizeof(dp));
scanf("%lf",&n);
dp[int(n)]=0.0;
for(int i=n-1;i>=0;--i)
{ dp[i]=dp[i+1]+n/(n-i);
}
printf("%.2lf\n",dp[0]);
}
return 0;
}

SPOJ Favorite Dice(概率dp)的更多相关文章

  1. Throwing Dice(概率dp)

    C - Throwing Dice Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Lig ...

  2. HDU 4599 Dice (概率DP+数学+快速幂)

    题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...

  3. [spoj Favorite Dice ][期望dp]

    (1)https://vjudge.net/problem/SPOJ-FAVDICE 题意:有一个n面的骰子,每一面朝上的概率相同,求所有面都朝上过至少一次的总次数期望. 题解:令dp[i]表示 i ...

  4. hdu 4599 Dice 概率DP

    思路: 1.求f[n];dp[i]表示i个连续相同时的期望 则 dp[0]=1+dp[1]     dp[1]=1+(5dp[1]+dp[2])/6     ……     dp[i]=1+(5dp[1 ...

  5. hdu 4652 Dice 概率DP

    思路: dp[i]表示当前在已经投掷出i个不相同/相同这个状态时期望还需要投掷多少次 对于第一种情况有: dp[0] = 1+dp[1] dp[1] = 1+((m-1)*dp[1]+dp[2])/m ...

  6. dice 概率论 概率DP

    题目链接: http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1010&cid=459 找出公式,公式有实际意义,某种情形当 ...

  7. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  8. HDU 3076:ssworld VS DDD(概率DP)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=3076 ssworld VS DDD Problem Description   One day, s ...

  9. HDU 4405:Aeroplane chess(概率DP入门)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Problem Description   Hzz loves ...

随机推荐

  1. 【Spring】Spring 事务控制

    Spring 事务控制 Spring 事务控制介绍 JavaEE 体系进行分层开发,事务控制位于业务层,Spring 提供了分层设计业务层的事务处理解决方案. Spring 的事务控制都是基于 AOP ...

  2. PAT天梯赛练习 L3-003 社交集群 (30分) DFS搜索

    题目分析: 一共有N个编号为1~1000的人,以及一共有编号为1~1000种不同的兴趣,在题目给出1~N编号的人员每个人喜欢的兴趣的id后,要求统计出不同的人员集合的个数以及每个人员几个的人数从大到小 ...

  3. 行业动态 | 利用Cassandra数据库揭开家族祖先的秘密

        FamilySearch选择了基于Apache Cassandra的DataStax Enterprise (DSE)来加速用户增长,并通过更快的反应时间.高可用性以及零数据库宕机来提供强大的 ...

  4. Netty源码解析 -- FastThreadLocal与HashedWheelTimer

    Netty源码分析系列文章已接近尾声,本文再来分析Netty中两个常见组件:FastThreadLoca与HashedWheelTimer. 源码分析基于Netty 4.1.52 FastThread ...

  5. 【九阳神功】Nessus 8_VM不限IP及AWVS破解版合体部署

    Nessus 8下载地址: https://moehu-my.sharepoint.com/personal/ximcx_moebi_org/_layouts/15/download.aspx?Sou ...

  6. C++导言与入门

    写在开始 计算机编程语言: Remember that a program is just a sequence of instructions telling a computer what to ...

  7. MYSQL基础知识的复习1

    数据库(是存放数据的仓库) 1.根据存储量以及安全性上来划分: 大型数据库:DB2 Oracle(毕业) Hbase 银行 公安局(不加班 没网) 移动 中型数据库:mysql sqlserver(. ...

  8. Ansible自动化运维工具的使用

                                 Ansible自动化运维工具的使用       host lnventory 管理主机 ip  root账号密码 ssh端口 core mod ...

  9. Property or method "previewUrl" is not defined on the instance but referenced during render. Make sure that this property is reactive, either in the data option, or for class-based components,

    Property or method "previewUrl" is not defined on the instance but referenced during rende ...

  10. Lua大量字符串拼接方式效率对比及原因分析

    Lua大量字符串拼接方式效率对比及原因分析_AaronChan的博客-CSDN博客_lua字符串拼接消耗 https://blog.csdn.net/qq_26958473/article/detai ...