在机器学习中,我们一直期望学习一个泛化能力(generalization)强的函数只有泛化能力强的模型才能很好地适用于整个样本空间,才能在新的样本点上表现良好。

\[y=a+bx+cx^2+dx^3\tag{1}
\]

如上图,公式(1)完美地拟合了训练空间中所有的点,如果具备过拟合(overfiting)的能力,那么这个方程肯定是一个比较复杂的非线性函数。正是因为这里的 \(x^2\) 和 \(x^3\) 的参数 \(c\) 和 \(d\) 使得这条曲线可以弯来弯去去拟合训练样本空间中的点。但是我们希望的是模型可以学习到图面中这条蓝色的曲线,因为它能更有效地概括数据,所以我们希望 \(c\) 和 \(d\) 的值相对减小。虽然蓝色函数训练时对应的误差要比红色的大,但它概括起数据来要比蓝色的好。

训练集通常只是整个样本空间很小的一部分,在训练机器学习模型时,稍有不注意,就可能将训练集中样本的特性当作全体样本的共性,以偏概全,而造成过拟合,如何避免过拟合,是机器学习模型时亟待解决的绊脚石。

从问题的根源出发,解决过拟合无非两种途径:

  • 使训练集能够尽可能全面的描述整个样本空间。因此又存在两种解决方案。①减少特征维数,特征维数减少了,样本空间的大小也随之减少了,现有数据集对样本空间的描述也就提高了。②增加训练样本数量,试图直接提升对样本空间的描述能力。
  • 加入规则化项。(规则化在有些文档中也称作正规化

第一种方法的人力成本通常很大,所以在实际中,我们通常采用第二种方法提升模型的泛化能力。

规则化(Regularization)

首先回顾一下,在寻找模型最优参数时,我们通常对损失函数采用梯度下降(gradient descent)算法

\[w^*,b^*=arg \ {min_{w,b}}\sum^m_{i=1} (y^{(i)}-(w^Tx^{(i)}+b))^2\tag{2}
\]
\[\frac{∂L}{∂w}=\sum^m_{i=1}2(y^{(i)}-(w^Tx^{(i)}+b))(-x^{(i)})\tag{3}
\]
\[\frac{∂L}{∂b}=\sum^m_{i=1}2(y^{(i)}-(w^Tx^{(i)}+b))(-1)\tag{3}
\]

通过上述公式,我们将一步步走到损失函数的最低点(不考虑局部最小值和鞍点的情况),这是的 \(w\) 和 \(b\) 就是我们要找的最优参数。

我们可以看到,当我i们的损失函数只考虑最小化训练误差,希望找到的最优函数能够尽可能的拟合训练数据。但是正如我们所了解的,训练集不能代表整个样本空间,所以训练误差也不能代表测试误差,训练误差只是经验风险,我们不能过分依赖这个值。当我们的函数对训练集拟合特别好,训练误差特别小时,我们也就走进了一个极端——过拟合

为了解决这个问题,研究人员提出了规则化(regularization)方法。通过给模型参数附加一些规则,也就是约束,防止模型过分拟合训练数据。规则化通过在原有损失函数的基础上加入规则化项实现。

此时,最优化的目标函数如下:

\[w^*=argmin_w[\sum_iL(y^{(i)},f(x^{(i)};w))+λΩ(w)]\tag{4}
\]

其中,第一项对应于模型在训练集上的误差,第二项对应于规则化项。为了使得该目标函数最小,我们需要对训练误差和规则化项之间做出权衡。


那应该选择怎样的表达式作为规则化项呢?以下引用李航博士《统计学习方法》中的一些描述:

规则化是结构风险最小化策略的实现,是在经验风险最小化上加一个规则化项(regularizer)惩罚项(penalty term)。规则化项一般是模型复杂度的单调递增函数,模型越复杂,规则化值就越大。比如,规则化项可以是模型参数向量的范数。

规则化符合奥卡姆剃刀(Occam‘s razor)原理。奥卡姆剃刀原理应用于模型选择时变为以下想法:在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。从贝叶斯估计的角度来看,规则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。


我们通常采用L1-范数L2-范数作为规则化项。

L-1范数

向量的L1-范数是向量的元素绝对值之和,即

\[||x||_1=\sum_i(x_i)\tag{5}
\]

当采用L1-范数作为规则化项对参数进行约束时,我们的优化问题就可以写成一下形式:

\[min_w \frac{1}{2}(y-Xw)^2\\
s.t. \quad ||w||_1\leq C
\]

采用拉格朗日乘子法可以将约束条件合并到最优化函数中,即

\[min_w \frac{1}{2}(y-Xw)^2+λ||w|| _1
\]

其中,\(λ\) 是与 \(C\) 一一对应的常数,用来权衡误差项和规则化项,\(λ\) 越大,约束越强。二维情况下分别将损失函数的等高线图和L1-范数规则化约束画在同一个坐标轴下,


L1-范数约束对应于平面上一个正方形norm ball。不难看出,等高线与norm ball首次相交的地方可以使整个目标函数最小,即最优解。可以看到,L1-ball在和每个坐标轴相交的地方都有一个“角”出现,大部分时候等高线都会与norm ball在角的地方相交。这样部分参数值被置为0,相当于该参数对应的特征将不再发挥作用,实现了特征选择,增加了模型的可解释性。关于L1-范数规则化,可以解释如下:训练出来的参数代表权重,反映了特征的重要程度,比如 $y=20x_1+5x_2+3$ 中特征 $x_1$ 明显比 $x_2$ 更重要,因为 $x_1$ 的变动相较于 $x_2$ 的变动会给 $y$ 带来更大的变化。在人工选取的特征中,往往会存在一些冗余特征或者无用特征,L1-范数规则化将这些特征的权重置为0,实现了特征选择,同样也简化了模型。

L1-范数在 $x=0$ 处存在拐点,所以不能直接求得解析解,需要用次梯度方法处理不可导的凸函数。

L2-范数

除了L1-范数,还有一种广泛使用的规则化范数:L2-范数。向量的L2-范数是向量的模长,即

\[||x||_2=\sqrt{\sum_i(x_i^2)}\tag{6}
\]

当采用L2-范数作为规则化项对参数进行约束时,我们的优化问题可以写成以下形式:

\[min_w \frac{1}{2}(y-Xw)^2 \\
s.t. \quad ||w||_2 \leq C
\]

同样可以将约束条件合并到最优化函数中,得到如下函数

\[min_w \frac{1}{2}(y-Xw)^2+λ||w|| _2
\]

也将损失函数的等高线图和L2-范数规则化约束画在同一坐标轴下,


L2-范数约束对应于平面上一个圆形norm ball。等高线与norm ball首次相交的地方就是最优解。与L1-范数不同,L2-范数使得每一个 $w$ 都很小,都接近于0,但不会等于0,L2-范数规则化仍然试图使用每一维特征。对于L2-范数规则化可以解释如下:L2-范数规则化项将参数限制在一个较小的范围,参数越小,曲面越光滑,因而不会出现很小区间内,弯度很大的情。当 $x$ 出现一个较大的变化时, $y$ 也只会变化一点点,模型因此更加稳定,也就更加generalization。

加入L2-范数规则化项后,目标函数扩展为如下形式:
$$
w^*,b^*=arg\ min_{w,b}\sum_{i=1}^m(y^{(i)}-(w^Tx^{(i)}+b)^2 + λ\sum^n_{j=1}w^2_j\tag{7}
$$
$$
\frac{∂L}{∂w}=\sum^m_{i=1}2[(y^{(i)}-(w^Tx^{(i)}+b)(-x^{(i)})+λw]\tag{8}
$$
$$
\frac{∂L}{∂b}=\sum^m_{i=1}2[(y^{(i)}-(w^Tx^{(i)}+b)(-x^{(i)})(-1)λw]\tag{9}
$$


L1-范数和L2-范数的比较


假设现在之后两个参数 $θ_1$ 和 $θ_2$ 要学。 如图,其中蓝色圆心是误差最小的地方,每条蓝线上的误差都是一样,正规化的方程就是在黄线上产生的额外误差,黄线上的额外误差的值也都一样,所以在黄线和蓝线交点的位置能够使两个误差的和最小,这也是 $θ_1$ 和 $θ_2$ 规则化后的解。

值得一提的是,使用L1-范数的方法很有可能只有 $θ_1$ 的特征被保留,所以很多人采用L1-范数规则化提取对结果`贡献最大`的特征。

但是L1的解并不是很稳定,比如批数据训练,每一次批数据都会有稍稍不同的误差曲线。L2对于这种变化,交点的移动并不会特别明显,而L1的交点的很可能会跳到很多不同的地方,如下图。因为这些地方的总误差都差不多,侧面说明了L1的解不稳定。


参考

[1] https://blog.csdn.net/hohaizx/article/details/80973738.

[2] https://www.bilibili.com/video/BV1Tx411j7tJ?from=search&seid=5329920308199944586.

机器学习基础——规则化(Regularization)的更多相关文章

  1. 最优化方法:范数和规则化regularization

    http://blog.csdn.net/pipisorry/article/details/52108040 范数规则化 机器学习中出现的非常频繁的问题有:过拟合与规则化.先简单的来理解下常用的L0 ...

  2. 机器学习中的范数规则化之L0、L1与L2范数

    今天看到一篇讲机器学习范数规则化的文章,讲得特别好,记录学习一下.原博客地址(http://blog.csdn.net/zouxy09). 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  3. 转:机器学习 规则化和模型选择(Regularization and model selection)

    规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1 ...

  4. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  5. 机器学习中的范数规则化之(一)L0、L1与L2范数(转)

    http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...

  6. 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  7. 机器学习中的范数规则化-L0,L1和L2范式(转载)

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  8. 机器学习中的规则化范数(L0, L1, L2, 核范数)

    目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...

  9. 机器学习中的范数规则化 L0、L1与L2范数 核范数与规则项参数选择

    http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...

随机推荐

  1. LVS之2---基于LVS负载均衡集群架构

    LVS之2---基于LVS负载均衡集群架构实现 目录 LVS之2---基于LVS负载均衡集群架构实现 ipvsadm software package Options 常用命令 保存及重载规则 内存映 ...

  2. 「译」用 Blazor WebAssembly 实现微前端

    原文作者: Wael Kdouh 原文链接:https://medium.com/@waelkdouh/microfrontends-with-blazor-webassembly-b25e4ba3f ...

  3. sql操作数据库(3)-->外键约束、数据库表之间的关系、三大范式、多表查询、事务

    外键约束 在新表中添加外键约束语法: constraint 外键约束名称 foreign key(外键的字段名称) references 主表表名(主键字段名) 在已有表中添加外键约束:alter t ...

  4. C#:使用连接字符串连接数据库

    前言:在上学期选择专业时候,选择的是互联网(还有物联网),这学期相关课程便是使用c#完成一个管理系统:最近的作业是完成一个对数据库操作类,操作数据库?虽然是很简单的一个作业,但也是懵逼了很久,在网上找 ...

  5. RMI之由浅入深(一)

    0x01.什么是RMI RMI(Remote Method Invocation)即Java远程方法调用,RMI用于构建分布式应用程序,RMI实现了Java程序之间跨JVM的远程通信.顾名思义,远程方 ...

  6. Tomca7t服务器 配置HTTP和HTTPS 同时访问

    (首先你要有 ssl 证书 ,我是阿里的 ) 查看申请ssl证书(https://www.cnblogs.com/lxf-mw/p/14261303.html) 一.下载 tomcat证书(两个文件) ...

  7. js 判断用户是手机端还是电脑端访问

    通过userAgent 判断,网页可以直接使用 navigation对象 node端 可以通过请求头的 ctx.request.header['user-agent'] const browser = ...

  8. Flutter 基础组件:状态管理

    前言 一个永恒的主题,"状态(State)管理",无论是在React/Vue(两者都是支持响应式编程的Web开发框架)还是Flutter中,他们讨论的问题和解决的思想都是一致的. ...

  9. 支持向量机(SVM)原理详解

    SVM简介 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机:SVM还包括核技巧, ...

  10. session、cookie、token的区别

    从安全性优先级来说: 1.优先级 Cookie<session<token 2. 安全性 Cookie: ①cookie不是很安全,别人可以分析存放在本地的cookie并进行cookie欺 ...