http://poj.org/problem?id=1284

fr=aladdin">原根

题意:对于奇素数p,假设存在一个x(1<x<p),(x^i)%p两两不同(0<i<p),且解集等于{1,2....,p-1}。

称x是p的一个原根。

输入p问p的原根有多少个。

直接枚举的,TLE了。

看到discuss里面说是求原根。答案直接是phi[p-1]。百度百科上直接就给出答案了。m有原根的充要条件是m=
1,2,4,p,2p,p^n,当中p是奇素数,n是随意正整数。它所含原根的个数是phi[phi[m]],由于phi[m]=m-1,所以答案是phi[m-1]。



#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define _LL __int64
#define eps 1e-12
#define PI acos(-1.0)
using namespace std; const int maxn = 65540;
int flag[maxn];
int prime[maxn];
int phi[maxn]; void init()
{
memset(flag,0,sizeof(flag));
phi[1] = 1;
prime[0] = 0;
for(int i = 2; i < maxn; i++)
{
if(flag[i] == 0)
{
phi[i] = i-1;
prime[++prime[0]] = i;
}
for(int j = 1; j <= prime[0]&&prime[j]*i<maxn; j++)
{
flag[prime[j]*i] = 1;
if(i%prime[j] == 0)
phi[i*prime[j]] = phi[i] * prime[j];
else
phi[i*prime[j]] = phi[i] * (prime[j]-1);
}
}
}
int p;
int main()
{
init();
while(scanf("%d",&p) != EOF)
{
printf("%d\n",phi[p-1]);
}
return 0;
}

poj 1284 Primitive Roots(原根+欧拉函数)的更多相关文章

  1. POJ 1284 Primitive Roots 原根

    题目来源:POJ 1284 Primitive Roots 题意:求奇素数的原根数 思路:一个数n是奇素数才有原根 原根数是n-1的欧拉函数 #include <cstdio> const ...

  2. (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))

    /* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...

  3. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  4. poj 1284 Primitive Roots

    从来没有接触过完全剩余系,不会证明,知道看了别人的题解才知道要用欧拉函数: 下面是证明过程: p是奇素数,如果{xi%p | 1 <= i <= p - 1} = {1,2,...,p-1 ...

  5. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  6. poj 3090 &amp;&amp; poj 2478(法雷级数,欧拉函数)

    http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...

  7. POJ 2407:Relatives(欧拉函数模板)

    Relatives AC代码 Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16186   Accept ...

  8. POJ 2478 线性递推欧拉函数

    题意: 求sigma phi(n) 思路: 线性递推欧拉函数 (维护前缀和) //By SiriusRen #include <cstdio> using namespace std; # ...

  9. 【poj1284-Primitive Roots】欧拉函数-奇素数的原根个数

    http://poj.org/problem?id=1284 题意:给定一个奇素数p,求p的原根个数. 原根: { (xi mod p) | 1 <= i <= p-1 } is equa ...

随机推荐

  1. 三:Ionic Framework开发Android应用

    第一步:添加Android平台 ionic cordova platform add android 第二步:编译Android应用 中间等待的过程有点长,需要耐心等待,生成的apk此时可以复制至平板 ...

  2. 洛谷P1565牛宫

    传送门:题目点这里; 首先理解题目,就是要求给定矩阵中权值和不小于零的最大子矩阵,数据范围200也还不算棘手,暴力n^4的算法也可以水到50分.正解要用到单调栈配合二分和前缀和,复杂度n^3logn, ...

  3. 如何用jmeter对websockt和protobuf进行压力测试

    参考代码:https://github.com/hutao722/kekexinxin 这是基于Jmeter WebsocketSampler的插件,支持对基于websocket和protobuf的服 ...

  4. Visual Studio Xamarin中找不到iOS模拟器

    Visual Studio Xamarin中找不到iOS模拟器 Visual Studio可以正常连接Mac系统,但是在测试时候,提示以下错误信息:Failed to start iOS Simula ...

  5. python--flask框架的安装和简单使用(转)

    原文地址:http://blog.csdn.net/xiaowu8858892520/article/details/54428196

  6. [BZOJ1913][APIO2010]信号覆盖(计算几何+计数)

    1913: [Apio2010]signaling 信号覆盖 Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1658  Solved: 672[Subm ...

  7. 【DFS】算24点

    [tyvj2802/RQNOJ74]算24点 描述 几十年前全世界就流行一种数字游戏,至今仍有人乐此不疲.在中国我们把这种游戏称为“算24点”.您作为游戏者将得到4个1~9之间的自然数作为操作数,而您 ...

  8. 【tarjan+缩点】BZOJ1051-受欢迎的牛

    [题意] 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎. ...

  9. 数组中的forEach和map的区别

    大多数情况下,我们都要对数组进行遍历,然后经常用到的两个方法就是forEach和map方法. 先来说说它们的共同点 相同点 都是循环遍历数组中的每一项 forEach和map方法里每次执行匿名函数都支 ...

  10. sql 空值设置默认值

    ifnull(a.discountsign, ') AS "discountsign"