https://www.lydsy.com/JudgeOnline/problem.php?id=4568

https://www.luogu.org/problemnew/show/P3292

A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。

一些旅行者希望游览 A 国。旅行者计划乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。

例如,游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 xor 7 xor 11)。

有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5 和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中可以保留的最大幸运值是多少。

学会了st表求线性基的方法。

我们可以将一个线性基内的东西全部扔到另一个线性基里面,就是一种合并了。

然后就没有了,LCA求顺带着合并线性基即可。

(其实实际上这是一道码农题。)

#include<cstdio>
#include<iostream>
#include<vector>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int BASE=;
const int LOGN=;
inline ll read(){
ll X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}e[N*];
struct basis{
ll c[BASE+];
}b[N][LOGN+];
int n,q,cnt,head[N],dep[N];
int anc[N][LOGN+];
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
void ins(ll k,basis &a){
for(int i=BASE;i>=;i--)
if(k>>i&)
if(a.c[i])k^=a.c[i];
else{
a.c[i]=k;
break;
}
}
basis merge(basis a,basis b){
for(int i=BASE;i>=;i--)
if(b.c[i])ins(b.c[i],a);
return a;
}
void dfs(int u){
dep[u]=dep[anc[u][]]+;
for(int i=;i<=LOGN;i++){
anc[u][i]=anc[anc[u][i-]][i-];
b[u][i]=merge(b[u][i-],b[anc[u][i-]][i-]);
}
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v!=anc[u][]){
anc[v][]=u;
dfs(v);
}
}
}
ll getans(basis a){
ll ans=;
for(int i=BASE;i>=;i--)
ans=max(ans,ans^a.c[i]);
return ans;
}
ll query(int i,int j){
static basis t1,t2;
memset(t1.c,,sizeof(t1.c));
memset(t2.c,,sizeof(t2.c));
if(dep[i]<dep[j])swap(i,j);
for(int k=LOGN;k>=;k--){
if(dep[anc[i][k]]>=dep[j]){
t1=merge(t1,b[i][k]);
i=anc[i][k];
}
}
if(i==j)return getans(merge(t1,b[i][]));
for(int k=LOGN;k>=;k--){
if(anc[i][k]!=anc[j][k]){
t1=merge(t1,b[i][k]);t2=merge(t2,b[j][k]);
i=anc[i][k],j=anc[j][k];
}
}
t1=merge(t1,b[i][]);t2=merge(t2,b[j][]);
return getans(merge(merge(t1,t2),b[anc[i][]][]));
}
int main(){
n=read(),q=read();
for(int i=;i<=n;i++)ins(read(),b[i][]);
for(int i=;i<n;i++){
int u=read(),v=read();
add(u,v);add(v,u);
}
dfs();
for(int i=;i<=q;i++){
int u=read(),v=read();
printf("%lld\n",query(u,v));
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4568:[SCOI2016]幸运数字——题解的更多相关文章

  1. [BZOJ4568][SCOI2016]幸运数字(倍增LCA,点分治+线性基)

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2131  Solved: 865[Submit][Statu ...

  2. bzoj4568: [Scoi2016]幸运数字(LCA+线性基)

    4568: [Scoi2016]幸运数字 题目:传送门 题解: 好题!!! 之前就看过,当时说是要用线性基...就没学 填坑填坑: %%%线性基 && 神犇 主要还是对于线性基的运用和 ...

  3. [BZOJ4568][Scoi2016]幸运数字 倍增+线性基

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1791  Solved: 685[Submit][Statu ...

  4. bzoj4568 [Scoi2016]幸运数字 线性基+树链剖分

    A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游览 A ...

  5. 【线性基合并 树链剖分】bzoj4568: [Scoi2016]幸运数字

    板子题 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市 ...

  6. BZOJ4568 [Scoi2016]幸运数字 【点分治 + 线性基】

    题目链接 BZOJ4568 题解 选任意个数异或和最大,使用线性基 线性基插入\(O(logn)\),合并\(O(log^2n)\) 我们要求树上两点间异或和最大值,由于合并是\(O(log^2n)\ ...

  7. BZOJ4568 : [Scoi2016]幸运数字

    树的点分治,每次求出重心后,求出重心到每个点路径上的数的线性基. 对于每个询问,只需要暴力合并两个线性基即可. 时间复杂度$O(60n\log n+60^2q)$. #include<cstdi ...

  8. 2019.03.25 bzoj4568: [Scoi2016]幸运数字(倍增+线性基)

    传送门 题意:给你一棵带点权的树,多次询问路径的最大异或和. 思路: 线性基上树?? 倍增维护一下就完了. 时间复杂度O(nlog3n)O(nlog^3n)O(nlog3n) 代码: #include ...

  9. BZOJ4568: [Scoi2016]幸运数字(线性基 倍增)

    题意 题目链接 Sol 线性基是可以合并的 倍增维护一下 然后就做完了?? 喵喵喵? // luogu-judger-enable-o2 #include<bits/stdc++.h> # ...

随机推荐

  1. Redis系列五 Redis持久化

    Redis持久化 一.RDB(Redis DataBase) 1.介绍 在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里. Red ...

  2. Redis系列一 Redis安装

    Redis系列一    Redis安装 1.安装所使用的操作系统为Ubuntu16.04 Redis版本为3.2.9 软件一般下载存放目录为/opt,以下命令操作目录均为/opt root@ubunt ...

  3. 「日常训练」Known Notation(ZOJ-3829)

    题意与分析 题意是这样的:给一个字符串,字符串中只包含数字和运算符'*'.现在问字符串是不是一个合法的逆波兰式(后缀表达式).已知逆波兰式的空格消除,也就是说123可以看成123也可以看成1和23.如 ...

  4. jmeter3.0 java请求

    1.java请求说明 需要压测某些java方法或一些请求需要通过编写代码实现 1.1.依赖jar包: jmeter下/lib/ext中的ApacheJMeter_java.jar(必须).Apache ...

  5. Shader Forge学习

    最近学习了一下shader forge,一个屌屌哒插件用来生成shader.尽管其降低了制作shader的难度,但是真的想做出满意的shader的话还是得有一定的shader基础.但是仅仅是做出一些简 ...

  6. 【Python+OpenCV】人脸识别基于环境Windows+Python3 version_3(Anaconda3)+OpenCV3.4.3安装配置最新版安装配置教程

    注:本次安装因为我要安装的是win10(64bit)python3.7与OpenCV3.4.3教程(当下最新版,记录下时间2018-11-17),实际中这个教程的方法对于win10,32位又或是64位 ...

  7. 如何区别cookie和token?---测试cookie和token接口时先看。

    cookie 是什么? cookie--------------在浏览器中的长相?火狐浏览器 ----------------------------------------------------- ...

  8. solidity python 签名和验证

    注意,以太坊智能合约里面采用的是公钥非紧凑类型 def gen_secrets_pair(): """ 得到公钥和私钥 :return: ""&quo ...

  9. Thunder团队第五周 - Scrum会议6

    Scrum会议6 小组名称:Thunder 项目名称:i阅app Scrum Master:邹双黛 工作照片: 宋雨同学在拍照,所以不在照片内. 参会成员: 王航:http://www.cnblogs ...

  10. 算法与数据结构实验题 6.4 Summary

    ★实验任务 可怜的 Bibi 丢了好几台手机以后,看谁都像是小偷,他已经在小本本上记 下了他认为的各个地点的小偷数量. 现在我们将 Bibi 的家附近的地形抽象成一棵有根树.每个地点都是树上的 一个节 ...