NYOJ 1000 又见斐波那契数列
- 描述
-
斐波那契数列大家应该很熟悉了吧。下面给大家引入一种新的斐波那契数列:M斐波那契数列。 M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,聪明的你能求出F[n]的值吗?
- 输入
- 输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 ) - 输出
- 对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
- 样例输入
-
0 1 0
6 10 2 - 样例输出
-
0
60
Solution:
本题我们容易发现$F[0]=a,F[1]=b,F[2]=ab,F[3]=ab^2,F[4]=a^2b^3,F[5]=a^3b^5…$,设$f[i]表示第i个斐波拉契数$,则$F[n]=a^{f[n-1]}b^{f[n]},n≥2$
于是,$F[n]=a^{f[n-1]}b^{f[n]}\;mod\;p$,关键是$ a,b $指数会很大,由扩展欧拉定理(关于扩展欧拉定理):
$a^n≡a^{n\;mod\;\phi (p)}\;mod\;p,\quad gcd(a,p)=1$,注意到$ p $为素数,于是$gcd(a,p)=1,\phi (p)=p-1$,
那么本题就直接套上矩阵快速幂取对$p-1$取模求出$a,b$的系数,然后再普通快速幂对$p$取模求$ans$就$OK$了。
代码:
/*题意是给定F[1]=a,F[2]=b,F[n]=F[n-1]*F[n-2],求第n项对素数m取模*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define il inline
#define ll long long
#define mem(p) memset(&p,0,sizeof(p))
using namespace std;
const ll mod = 1e9+;
ll a,b,n,phi=mod-,mia,mib;
struct mat{ll a[][],r,c;};
il mat mul(mat x,mat y)
{
mat p;
mem(p);
p.r=x.r,p.c=y.c;
for(int i=;i<x.r;i++)
for(int j=;j<y.c;j++)
for(int k=;k<x.c;k++)
p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j]%phi)%phi;
return p;
}
il void fast(ll k)
{
mat p,ans;
mem(p),mem(ans);
p.r=p.c=;
p.a[][]=p.a[][]=p.a[][]=;
ans.r=,ans.c=;
ans.a[][]=,ans.a[][]=;
while(k){
if(k&)ans=mul(ans,p);
p=mul(p,p);
k>>=;
}
mib=ans.a[][];mia=ans.a[][];
}
il ll qpow(ll o,ll k)
{
ll ans=;
while(k)
{
if(k&)ans=ans*o%mod;
k>>=;
o=o*o%mod;
}
return ans;
}
int main()
{
ios::sync_with_stdio();
//cout<<phi<<endl;
while(cin>>a>>b>>n){
if(n==){cout<<(a>mod?a%mod:a)<<endl;continue;}
if(n==){cout<<(b>mod?b%mod:b)<<endl;continue;}
if(n==){cout<<a*b%mod<<endl;continue;}
fast(n-);
// cout<<mia<<' '<<mib<<endl;
cout<<qpow(a,mia)*qpow(b,mib)%mod<<endl;
}
return ;
}
NYOJ 1000 又见斐波那契数列的更多相关文章
- Python递归函数与斐波那契数列
定义:在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 阶乘实例 n = int(input(">>:")) def f(n): s ...
- 2018年湘潭大学程序设计竞赛G又见斐波那契
链接:https://www.nowcoder.com/acm/contest/105/G来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...
- Python中斐波那契数列的四种写法
在这些时候,我可以附和着笑,项目经理是决不责备的.而且项目经理见了孔乙己,也每每这样问他,引人发笑.孔乙己自己知道不能和他们谈天,便只好向新人说话.有一回对我说道,“你学过数据结构吗?”我略略点一点头 ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 九度OJ题目1387斐波那契数列
/*斐波那契数列,又称黄金分割数列,指的是这样一个数列: 0.1.1.2.3.5.8.13.21.…… 在数学上,斐波纳契数列被定义如下: F0=0,F1=1, Fn=F(n-1)+F(n-2)(n& ...
- Python(迭代器 生成器 装饰器 递归 斐波那契数列)
1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大优 ...
- hdu-5686 Problem B(斐波那契数列)
题目链接: Problem B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- [HDU 4549] M斐波那契数列
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
随机推荐
- 成都优步uber司机第五组奖励政策
7月14日,成都优步uber团队发布了第五组用户分组.在传言要推出第四组的时候,心想事不过三吧,意外,现在第五组都出来了.一起看看成都优步司机第五组的详细内容!滴滴快车单单2.5倍,注册地址:http ...
- 基于套接字通信的简单练习(FTP)
本项目基于c/s架构开发(采用套接字通信,使用TCP协议) FTP-Socket"""__author:rianley cheng""" 功 ...
- 安卓app连接CC2541-手机休眠后唤醒,通信不再成功
1. 现在遇到的问题,手机进入休眠状态后唤醒,APP软件和CC2541的通信不正常了,但是CC2541依然检测到时连接状态.如何解决这个问题?手机唤醒之后会重新创建活动? 2.Wakelock 锁机制 ...
- 「日常训练」Alternative Thinking(Codeforces Round #334 Div.2 C)
题意与分析 (CodeForces - 603A) 这题真的做的我头疼的不得了,各种构造样例去分析性质... 题意是这样的:给出01字符串.可以在这个字符串中选择一个起点和一个终点使得这个连续区间内所 ...
- Selenium(Python)调用pywin32上传图片
import unittestfrom time import sleep import osfrom selenium import webdriverimport win32apiimport w ...
- Selenium 入门到精通系列:四
Selenium 入门到精通系列 PS:鼠标右键.鼠标悬停.键盘操作方法 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019 ...
- Linux命令应用大词典-第3章 文本编辑器
3.1 vi:文本编辑器 3.2 nano:编辑器 3.3 view:文办编辑器 3.4 ex:文本编辑器 3.5 ed:文本编辑器 3.6 red:文本编辑器 3.1 vi:文本编辑器 1.对文本创 ...
- 微信小程序入门学习之事件 事件对象 冒泡非冒泡事件(1)
这关于事件的学习,可以自己复制到微信开发者工具上自己运行试试. 首先这里有两个文件.js 和.wxml 文件 首先给出.js文件下代码 // pages/news/news.js Page({ /** ...
- 【转】Unity 使用xLua遇到的坑
在我们使用xLua作为Unity中lua集成的解决方案时,遇到了一个问题,就是当我们使用在lua中把UI中的某个控件绑定相应的事件(如按钮的onClick事件),xLua绑定这个事件是用委托实现的,具 ...
- [Clr via C#读书笔记]Cp16数组
Cp16数组 一维数组,多维数组,交错数组:引用类型:P338的图非常的清楚地描述了值类型和引用类型在托管堆中的关系:越界检查: 数组初始化 数组初始化器: 四种写法 string[] names = ...