NYOJ 1000 又见斐波那契数列
- 描述
-
斐波那契数列大家应该很熟悉了吧。下面给大家引入一种新的斐波那契数列:M斐波那契数列。 M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,聪明的你能求出F[n]的值吗?
- 输入
- 输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 ) - 输出
- 对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
- 样例输入
-
0 1 0
6 10 2 - 样例输出
-
0
60
Solution:
本题我们容易发现$F[0]=a,F[1]=b,F[2]=ab,F[3]=ab^2,F[4]=a^2b^3,F[5]=a^3b^5…$,设$f[i]表示第i个斐波拉契数$,则$F[n]=a^{f[n-1]}b^{f[n]},n≥2$
于是,$F[n]=a^{f[n-1]}b^{f[n]}\;mod\;p$,关键是$ a,b $指数会很大,由扩展欧拉定理(关于扩展欧拉定理):
$a^n≡a^{n\;mod\;\phi (p)}\;mod\;p,\quad gcd(a,p)=1$,注意到$ p $为素数,于是$gcd(a,p)=1,\phi (p)=p-1$,
那么本题就直接套上矩阵快速幂取对$p-1$取模求出$a,b$的系数,然后再普通快速幂对$p$取模求$ans$就$OK$了。
代码:
/*题意是给定F[1]=a,F[2]=b,F[n]=F[n-1]*F[n-2],求第n项对素数m取模*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define il inline
#define ll long long
#define mem(p) memset(&p,0,sizeof(p))
using namespace std;
const ll mod = 1e9+;
ll a,b,n,phi=mod-,mia,mib;
struct mat{ll a[][],r,c;};
il mat mul(mat x,mat y)
{
mat p;
mem(p);
p.r=x.r,p.c=y.c;
for(int i=;i<x.r;i++)
for(int j=;j<y.c;j++)
for(int k=;k<x.c;k++)
p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j]%phi)%phi;
return p;
}
il void fast(ll k)
{
mat p,ans;
mem(p),mem(ans);
p.r=p.c=;
p.a[][]=p.a[][]=p.a[][]=;
ans.r=,ans.c=;
ans.a[][]=,ans.a[][]=;
while(k){
if(k&)ans=mul(ans,p);
p=mul(p,p);
k>>=;
}
mib=ans.a[][];mia=ans.a[][];
}
il ll qpow(ll o,ll k)
{
ll ans=;
while(k)
{
if(k&)ans=ans*o%mod;
k>>=;
o=o*o%mod;
}
return ans;
}
int main()
{
ios::sync_with_stdio();
//cout<<phi<<endl;
while(cin>>a>>b>>n){
if(n==){cout<<(a>mod?a%mod:a)<<endl;continue;}
if(n==){cout<<(b>mod?b%mod:b)<<endl;continue;}
if(n==){cout<<a*b%mod<<endl;continue;}
fast(n-);
// cout<<mia<<' '<<mib<<endl;
cout<<qpow(a,mia)*qpow(b,mib)%mod<<endl;
}
return ;
}
NYOJ 1000 又见斐波那契数列的更多相关文章
- Python递归函数与斐波那契数列
定义:在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 阶乘实例 n = int(input(">>:")) def f(n): s ...
- 2018年湘潭大学程序设计竞赛G又见斐波那契
链接:https://www.nowcoder.com/acm/contest/105/G来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...
- Python中斐波那契数列的四种写法
在这些时候,我可以附和着笑,项目经理是决不责备的.而且项目经理见了孔乙己,也每每这样问他,引人发笑.孔乙己自己知道不能和他们谈天,便只好向新人说话.有一回对我说道,“你学过数据结构吗?”我略略点一点头 ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 九度OJ题目1387斐波那契数列
/*斐波那契数列,又称黄金分割数列,指的是这样一个数列: 0.1.1.2.3.5.8.13.21.…… 在数学上,斐波纳契数列被定义如下: F0=0,F1=1, Fn=F(n-1)+F(n-2)(n& ...
- Python(迭代器 生成器 装饰器 递归 斐波那契数列)
1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大优 ...
- hdu-5686 Problem B(斐波那契数列)
题目链接: Problem B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- [HDU 4549] M斐波那契数列
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
随机推荐
- 一个只有十行的精简MVVM框架(上篇)
本文来自网易云社区. 前言 MVVM模式相信做前端的人都不陌生,去网上搜MVVM,会出现一大堆关于MVVM模式的博文,但是这些博文大多都只是用图片和文字来进行抽象的概念讲解,对于刚接触MVVM模式的新 ...
- hdu1045Fire Net(经典dfs)
Fire Net Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- hdu1527取石子游戏(威佐夫博弈)
取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- Appium1.8及以上命令行启动
安装命令行启动版本的Appium,appium-doctor需要独立下载了,用 npm的话需要FQ才好使,所有安装了cnpm代替npm, cnpm是从淘宝的国内镜像下载 npm config rm p ...
- mysql 各种存储引擎的特点
- [JSON].typeOf( keyPath )
语法:[JSON].typeOf( keyPath ) 返回:[String | Number | Boolean | Json | Array | Function | 空字符] 说明:获取指定键 ...
- python 终极篇 --- form组件 与 modelForm
form组件 ...
- 几个常见移动平台浏览器的User-Agent
之前介绍的手机站跳转url的一片文稿中提到,依据User Agent判断终端的方法.(文章地址:http://www.cnblogs.com/dereksunok/p/3664169.html ) 若 ...
- 在 Ubuntu 下安装 Deepin 的 QQ、微信、百度云和迅雷等软件
在以前的文章 Ubuntu 常用软件推荐(QQ.微信.MATLAB等)及安装过程 中,我们用 Wine QQ 和 Electronic Wechat 来解决 Ubuntu 系统下使用 QQ 和微信的难 ...
- solidity 智能合约操作
合约编译 #!/usr/bin/env python # coding: utf8 import json import os # Solc Compiler from functools impor ...