https://www.lydsy.com/JudgeOnline/problem.php?id=4299

https://www.lydsy.com/JudgeOnline/problem.php?id=4408

https://www.luogu.org/problemnew/show/P4587

https://loj.ac/problem/2174

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},

1 = 1

2 = 1+1

3 = 1+1+1

4 = 4

5 = 4+1

6 = 4+1+1

7 = 4+1+1+1

8无法表示为集合S的子集的和,故集合S的神秘数为8。

现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

这题双倍经验十分妙,解法也十分妙。

能够发现当我们有k个1的时候我们可以表示1~k,却没法表示k+1,此时我们需要一个k+1的数才能继续表示。

令n为k+1数的个数,则我们可以表示1~n*(k+1)+k的数(可以感性证明),继续递归即可。

主席树维护,复杂度O(nlog^2),因为每次递归一定会使答案*2.

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long double dl;
const int N=1e5+;
const int INF=1e9;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct tree{
int l,r,sum;
}tr[N*];
int n,m,pool,rt[N];
inline void insert(int y,int &x,int l,int r,int k){
tr[x=++pool]=tr[y];
tr[x].sum+=k;
if(l==r)return;
int mid=(l+r)>>;
if(k<=mid)insert(tr[y].l,tr[x].l,l,mid,k);
else insert(tr[y].r,tr[x].r,mid+,r,k);
}
inline int qry(int nl,int nr,int l,int r,int k){
if(l==r)return tr[nr].sum-tr[nl].sum;
int mid=(l+r)>>;
if(k<=mid)return qry(tr[nl].l,tr[nr].l,l,mid,k);
else return tr[tr[nr].l].sum-tr[tr[nl].l].sum+
qry(tr[nl].r,tr[nr].r,mid+,r,k);
}
int query(int l,int r){
int k=,maxn=;
while(){
maxn=qry(rt[l-],rt[r],,INF,k+);
if(k==maxn)return k+;
k=maxn;
}
}
int main(){
n=read();
for(int i=;i<=n;i++)insert(rt[i-],rt[i],,1e9,read());
m=read();
while(m--){
int l=read(),r=read();
printf("%d\n",query(l,r));
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解的更多相关文章

  1. 【洛谷4587】 [FJOI2016]神秘数(主席树)

    传送门 BZOJ 然而是权限题 洛谷 Solution 发现题目给出的一些规律,emm,如果我们新凑出来的一个数,那么后面一个数一定是\(sum+1\). 于是就可以主席树随便维护了! 代码实现 #i ...

  2. 洛谷 P1609 最小回文数 题解

    这题其实并不难,重点在你对回文数的了解,根本就不需要高精度. 打个比方: 对于一个形如 ABCDEFGH 的整数 有且仅有一个比它大的最小回文数 有且仅有一个比它小的最大回文数 而整数 ABCDDCB ...

  3. 洛谷P3413 SAC#1 - 萌数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P3413 题目大意: 定义萌数指:满足"存在长度至少为2的回文子串"的数. 求区间 \([L,R]\) ...

  4. 洛谷P1854 花店橱窗布置 分析+题解代码

    洛谷P1854 花店橱窗布置 分析+题解代码 蒟蒻的第一道提高+/省选-,纪念一下. 题目描述: 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定 ...

  5. HAOI2006 (洛谷P2341)受欢迎的牛 题解

    HAOI2006 (洛谷P2341)受欢迎的牛 题解 题目描述 友情链接原题 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之 ...

  6. 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)

    洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...

  7. 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)

    洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...

  8. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

  9. (bzoj4408)[FJOI2016]神秘数(可持久化线段树)

    (bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...

随机推荐

  1. GitLab 自动触发 Jenkins 构建

    GitLab 是当前应用非常广泛的 Git Hosting 工具,Jenkins 是非常牛逼的持续集成工具.尽管 GitLab 有内建的 GitLab CI,但它远没有 Jenkins 那么强大好用. ...

  2. eclipse导入jmeter3.1源码并运行

    jmeter3.1源码地址:https://archive.apache.org/dist/jmeter/source/ 1.打开eclipse,新建一个java project的项目,并点击next ...

  3. PS 去皱纹

    1.打开一个有皱纹的图片,选择修复画笔工具,按住Alt键吸取一块光滑的皮肤,然后再在有皱纹的位置上点击即可

  4. html div内第二行文字显示不下的时候才用省略号代替 css实现

    有时候文字太多,但为了美观想要在第二行的时候才显示省略号,而不是第一行超出马上就出现省略号 下面是css代码: overflow:hidden;text-overflow: ellipsis;//显示 ...

  5. Jmeter使用之:高效组织接口自动化用例技巧

    Jmeter怎么使用的文章多如牛毛,但怎么组织好测试用例,则几乎很难看到.在本文,我将把Jmeter下怎么组织测试用例的几点心得分享给大家,希望能给你一些帮助或启示. 1.善用“逻辑控制器”中的“简单 ...

  6. Python :编写条件分支代码的技巧

    『Python 工匠』是什么? 我一直觉得编程某种意义是一门『手艺』,因为优雅而高效的代码,就如同完美的手工艺品一样让人赏心悦目. 在雕琢代码的过程中,有大工程:比如应该用什么架构.哪种设计模式.也有 ...

  7. selenium自动化测试资源整理

    1. 所有版本chrome下载 是不是很难找到老版本的chrome?博主收集了几个下载chrome老版本的网站,其中哪个下载的是原版的就不得而知了. http://www.slimjet.com/ch ...

  8. JS获取HTML DOM元素的8种方法

    什么是HTML DOM 文档对象模型(Document Object Model),是W3C组织推荐的处理可扩展置标语言的标准编程接口.简单理解就是HTML DOM 是关于如何获取.修改.添加或删除 ...

  9. Java应用基础微专业-工程篇

    第1章-命令行 1.1 命令行基础 ls -a: list all files (including hidden files) .DS_Store: files detailed informati ...

  10. php多进程单例模式下的 MySQL及Redis连接错误修复

    前几天写了个php常驻脚本,主要逻辑如下 //跑完数据后休息60秒 $sleepTime = 60; $maxWorker = 10; while (true) { $htmlModel = new ...