【bzoj3437】小P的牧场 斜率优化dp
题目描述
背景
小P是个特么喜欢玩MC的孩纸。。。
描述
小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。
输入
第一行一个整数 n 表示牧场数目
第二行包括n个整数,第i个整数表示ai
第三行包括n个整数,第i个整数表示bi
输出
只有一行,包括一个整数,表示最小花费
样例输入
4
2 4 2 4
3 1 4 2
样例输出
9
题解
斜率优化dp
设f[i]为i建立控制站时前i个的最小代价。
那么有f[i]=f[j]+∑((i-k)*b[k])+a[i] (j+1≤k≤i)
=f[j]+∑(i*b[k])-∑(k*b[k])+a[i] (j+1≤k≤i)
=f[j]+i*(sum[i]-sum[j])-(t[i]-t[j])+a[i]
其中sum[i]为b[i]的前缀和,t[i]为b[i]*i的前缀和。
整理一下即为f[j]+t[j]=i*sum[j]+f[i]-i*sum[i]+t[i]-a[i]。
这样状态转移方程就让我们转化成y=kx+b的形式,并且要求f[i]的最小值,就是求这里b的最小值。
于是维护一个下凸包即可。
#include <cstdio>
#define y(i) (f[i] + t[i])
#define x(i) sum[i]
long long f[1000010] , a[1000010] , b[1000010] , sum[1000010] , t[1000010];
int q[1000010] , l , r;
int main()
{
int n , i;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &a[i]);
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &b[i]) , sum[i] = sum[i - 1] + b[i] , t[i] = t[i - 1] + b[i] * i;
for(i = 1 ; i <= n ; i ++ )
{
while(l < r && y(q[l + 1]) - y(q[l]) < (x(q[l + 1]) - x(q[l])) * i) l ++ ;
f[i] = y(q[l]) - i * x(q[l]) + i * sum[i] - t[i] + a[i];
while(l < r && (y(i) - y(q[r])) * (x(q[r]) - x(q[r - 1])) < (x(i) - x(q[r])) * (y(q[r]) - y(q[r - 1]))) r -- ;
q[++r] = i;
}
printf("%lld\n" , f[n]);
return 0;
}
【bzoj3437】小P的牧场 斜率优化dp的更多相关文章
- BZOJ3437:小P的牧场(斜率优化DP)
Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...
- bzoj3437小P的牧场 斜率优化dp
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1542 Solved: 849[Submit][Status][Discus ...
- BZOJ 3437: 小P的牧场 斜率优化DP
3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...
- bzoj3427小P的牧场(斜率优化dp)
小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧 ...
- 【BZOJ3437】小P的牧场 斜率优化
[BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...
- bzoj 3437: 小P的牧场 -- 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...
- BZOJ3437 小P的牧场 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8696321.html 题目传送门 - BZOJ3437 题意 给定两个序列$a,b$,现在划分$a$序列. 被划 ...
- bzoj3437小P的牧场
bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目 ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
随机推荐
- quartz与Spring整合
1.创建maven工程,导入spring和quartz相关依赖 2.创建任务类 3.在spring配置文件中配置任务类 4.在spring配置文件中配置JobDetail 5.在spring配置文件中 ...
- 【费元星原创】一键安装Hadoo2.7.6 集群完全分布式脚本-完美解决
有Bug 欢迎反馈,我不烦:feiyuanxing@gmail.com 1 #!/bin/bash #@author:feiyuanxing [既然笨到家,就要努力到家] #@date:2017-01 ...
- KubeCon深度洞察 | KubeEdge开源首秀
以下内容根据华为云DJ在KubeCon Shanghai Demo Session演讲实录整理而成. KubeEdge Demo Show 11月15日上午Huawei宣布了KubeEdge项目开源, ...
- sql注入记录------类型转换错误---convert()函数,一句话图片马制作
sql注入在联合查询是出现一下错误查不到数据 Illegal mix of collations for operation 'UNION' 用convert() 转换编码为utf8 或者big5 就 ...
- lintcode 二叉树后序遍历
/** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * Tr ...
- Intro to Probabilistic Model
概率论复习 概率(Probability) 频率学派(Frequentist):由大量试验得到的期望频率(致命缺陷:有些事情无法大量试验,例如一封邮件是垃圾邮件的概率,雷达探测的物体是一枚导弹的概率) ...
- Python最长连续数列的O(n)解法
题目 输入一个乱序的连续数列,输出其中最长连续数列长度,要求算法复杂度为 O(n) . 输入样例 100,4,200,1,3,2 54,55,300,12 1 5,4,3,2,1 1,2,3,4,5, ...
- 地牢逃脱(BFS(广度优先搜索))
题目描述 给定一个 n 行 m 列的地牢,其中 '.' 表示可以通行的位置,'X' 表示不可通行的障碍,牛牛从 (x0 , y0 ) 位置出发,遍历这个地牢,和一般的游戏所不同的是,他每一步只能按照一 ...
- numpy切片和布尔型索引
numpy 标签(空格分隔): numpy 数据挖掘 切片 数组切片是原始数组的视图.这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上 In [16]: arr Out[16]: arr ...
- Python3 Tkinter-OptionMenu
1.创建 from tkinter import * root=Tk() v=StringVar() v.set('xs') om=OptionMenu(root,v,'Python','PHP',' ...