BZOJ4144 [AMPPZ2014]Petrol 【最短路 + 最小生成树】
题目链接
题解
这题好妙啊,,orz
假设我们在一个非加油站点,那么我们一定是从加油站过来的,我们剩余的油至少要减去这段距离
如果我们在一个非加油站点,如果我们到达不了任意加油站点,我们一定废了
那么我们在一个非加油站点,就一定可以到达最近的加油站,而由于我们剩余的油是要减去到加油站距离的,所以我们剩余的油一定是\(b - d\),\(d\)表示到达最近加油站的距离。假如我们没有那么多油,我们一定可以开过去再回来,就有了
因此,我们在任意一个点的油量确定,两点之间可以直达,当且仅当
①两点间有边
②\(w + d[u] + d[v] \le b\)
因此可以以此为新边权跑最小生成树,同时离线回答询问
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 200005,maxm = 400005,INF = 2000000026;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,s,m,Q,c[maxn];
int h[maxn],ne;
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[++ne] = (EDGE){v,h[u],w}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v],w}; h[v] = ne;
}
struct edge{int a,b,w;}e[maxn];
inline bool operator < (const edge& a,const edge& b){
return a.w < b.w;
}
struct Que{int u,v,b,id;}q[maxn];
inline bool operator < (const Que& a,const Que& b){
return a.b < b.b;
}
priority_queue<cp,vector<cp>,greater<cp> > qu;
int vis[maxn],d[maxn];
void dijkstra(){
for (int i = 1; i <= n; i++) d[i] = INF;
for (int i = 1; i <= s; i++)
d[c[i]] = 0,qu.push(mp(0,c[i]));
int u;
while (!qu.empty()){
u = qu.top().second; qu.pop();
if (vis[u]) continue;
vis[u] = true;
Redge(u) if (!vis[to = ed[k].to] && d[u] + ed[k].w < d[to]){
d[to] = d[u] + ed[k].w;
qu.push(mp(d[to],to));
}
}
}
int ans[maxn],pre[maxn];
inline int find(int u){return u == pre[u] ? u : pre[u] = find(pre[u]);}
void kruskal(){
REP(i,m) e[i].w = e[i].w + d[e[i].a] + d[e[i].b];
sort(e + 1,e + 1 + m);
int t = 1,fa,fb;
REP(i,n) pre[i] = i;
for (int i = 1; i <= m; i++){
while (t <= Q && e[i].w > q[t].b){
ans[q[t].id] = (find(q[t].u) == find(q[t].v));
t++;
}
fa = find(e[i].a); fb = find(e[i].b);
if (fa != fb) pre[fb] = fa;
}
while (t <= Q){
ans[q[t].id] = (find(q[t].u) == find(q[t].v));
t++;
}
}
int main(){
n = read(); s = read(); m = read();
REP(i,s) c[i] = read();
REP(i,m){
e[i].a = read(); e[i].b = read(); e[i].w = read();
build(e[i].a,e[i].b,e[i].w);
}
Q = read();
REP(i,Q) q[i].u = read(),q[i].v = read(),q[i].b = read(),q[i].id = i;
sort(q + 1,q + 1 + Q);
dijkstra();
kruskal();
REP(i,Q) puts(ans[i] ? "TAK" : "NIE");
return 0;
}
BZOJ4144 [AMPPZ2014]Petrol 【最短路 + 最小生成树】的更多相关文章
- BZOJ4144: [AMPPZ2014]Petrol(最短路 最小生成树)
题意 题目链接 Sol 做的时候忘记写题解了 可以参考这位大爷 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...
- 【BZOJ4144】[AMPPZ2014]Petrol 最短路+离线+最小生成树
[BZOJ4144][AMPPZ2014]Petrol Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油 ...
- [BZOJ4144][AMPPZ2014]Petrol[多源最短路+MST]
题意 题目链接 分析 假设在 \(a \rightarrow b\) 的最短路径中出现了一个点 \(x\) 满足到 \(x\) 最近的点是 \(c\) ,那么我们完全可以从 \(a\) 直接走到 \( ...
- bzoj4144 [AMPPZ2014]Petrol
link 题意: 给一个n个点m条边的带权无向图,其中k个点是加油站,每个加油站可以加满油,但不能超过车的油量上限.有q个询问,每次给出x,y,b,保证x,y都是加油站,问一辆油量上限为b的车从x出发 ...
- 4144: [AMPPZ2014]Petrol (多源最短路+最小生成树+启发式合并)
4144: [AMPPZ2014]Petrol Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 752 Solved: 298[Submit][Sta ...
- BZOJ 4144: [AMPPZ2014]Petrol
4144: [AMPPZ2014]Petrol Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 457 Solved: 170[Submit][Sta ...
- Day3 最短路 最小生成树 拓扑排序
Day3 最短路 最小生成树 拓扑排序 (一)最短路 一.多源最短路 从任意点出发到任意点的最短路 1. Floyd \(O(n^3)\) for(int k=1;k<=n;k++) for(i ...
- 【BZOJ4144】[AMPPZ2014]Petrol(最短路+最小生成树+并查集)
Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是 ...
- BZOJ.4144.[AMPPZ2014]Petrol(Kruskal重构树)
BZOJ 看别人代码的时候发现哪一步都很眼熟,突然想起来,就在四个月前我好像看过还给别人讲过?mmp=v= 果然不写写就是容易忘.写了好歹忘了的时候还能复习呢(虽然和看别人的好像也没多少差别?). 首 ...
随机推荐
- Ruby 基础教程1-4
1.对象 数值对象 字符串对象 数组对象,散列对象 正则表达式对象 时间对象 文件对象 符号对象 2.类 Numeric String Array Hash Regexp File Symbol 3. ...
- 写了个汉字转G代码工具,无描边的那种,市面上没有类似的小软件
学了不少G代码知识, 将公司废旧的三轴非标设备改造成了一个雕刻机,市面上的小软件不好用 网上下的软件有描边的,字体刻起来太粗,这个比较好用,看图应该都能明白吧, 就自己写了个,“少于150字的随笔不允 ...
- hdu1051 Wooden Sticks(贪心+排序,逻辑)
Wooden Sticks Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- MySQL☞having子句
having子句:是跟group by结合使用,对分组以后的数据再次进行过滤,经常跟聚合函数结合使用 格式: select 列名/聚合函数 from 表名 where 条件 group by ...
- TPO-12 C2 A problem of the TA's payroll
TPO-12 C2 A problem of the TA's payroll payroll n. 工资单:在册职工人数:工资名单: paycheck n. 付薪水的支票,薪水 paperwork ...
- HADOOP-输出数据实体类承载
新建一个bean包: 1.实现Writerable 2.有一个空的构造方法 代码实现: import java.io.DataInput; import java.io.DataOutput; imp ...
- solidity 智能合约操作
合约编译 #!/usr/bin/env python # coding: utf8 import json import os # Solc Compiler from functools impor ...
- for和foreach的一点总结
两者都是数组的循环遍历,但是区别还是有点: for循环,如果块内有事件操作,那么i是不会等事件操作时候在依次增加,而是一次性走完,,也就是依靠下标定位,下标已经走完了,而foreah是依次增加,它是依 ...
- allocator类
一.动态数组 [new的局限性] new将内存分配和对象构造组合在一起,同样delete将对象析构和内存释放组合在一起 我们分配单个对象时,通常希望将内存分配和对象初始化组合在一起(我们知道对象应有什 ...
- Java学习个人备忘录之继承
继承的好处1. 提高了代码的复用性.2. 让类与类之间产生了关系,给第三个特征多态提供了前提. java中支持单继承,不直接支持多继承,但对C++中的多继承机制进行改良.java支持多层继承. C继承 ...