python操作rabbitmq、redis
1.启动rabbimq、mysql
在“”运行“”里输入services.msc,找到rabbimq、mysql启动即可
2.启动redis
管理员进入cmd,进入redis所在目录,执行redis-server.exe redis.windows.conf --maxmemory 200M 启动redis server
执行redis-cli.exe启动客户端
一、 python系列之 RabbitMQ - hello world
介绍

1 import pika
2 import sys
3
4 username = 'wt' #rabbitmq用户名
5 pwd = '111111' #rabbitmq密码
6 user_pwd = pika.PlainCredentials(username, pwd)
7 s_conn = pika.BlockingConnection(pika.ConnectionParameters('192.168.1.240', credentials=user_pwd))
8 chan = s_conn.channel()
9 print('hello') 或者 :
- credentials = pika.PlainCredentials('guest', 'geust')
- #这里可以连接远程IP,请记得打开远程端口
- parameters = pika.ConnectionParameters('localhost',5672,'/',credentials)
- connection = pika.BlockingConnection(parameters)
- channel = connection.channel()

Queue(队列):queue就是一个"邮箱"的简称,它存在于RabbitMQ内部。虽然消息在RabbitMQ和你的应用之间传输,但他们只能保存在一 个队列(queue)里面。队列是不受任何限制的约束,你可以想存多少就存多少 - 它本质上是一个无限的缓冲区。
Consumer(消费者):类似一个接收者, 一个 Consumer 是一个等待接收消息的程序,以下我们简称 “C"
Hello World
- 我们这里讲的RabbitMQ采用的是AMQP 0.9.1 ,一个开放的、通用的消息协议,在不同的语言中有很多的不同的RabbitMQ客户端,我们下面使用的是pika, 这个是RabbitMQ小组推荐的python客户端
Sending:
- import pika
- s_connec = pika.BlockingConnection(pika.ConnectionParameters('loaclhost'))
- chan = s_connec.channel()
我们现在就建立了连接了,由于我们中间件在本机所以这里的设置的是“localhost",如果我们想连接到一个不同的服务器,只 需要简单的将”localhost" 改为 服务器的主机名或IP地址.
- chan.queue_declare(queue='hello')
到这点我们就可以发送一个消息了,我们的第一个消息将正式包含一个字符串“hello world",将这个消息发送到 ”hello“队列 在RabbitMQ中,一个消息不能直接发送到一个队列中,通常需要通过一个交换(exchange),我们在后面的部分将详细讲解 exchange ,现在所有我们需要知道的是如何利用一个空字符串标识默认的exchange。这个一个特殊的exchange -- 它使我们能够确切地指定消息应该到哪个队列去。 这里需要在 routing_key 参数中指定发送的队列名:
- chan.basic_publish(exchange="",
- routing_key='hello',
- body="hello world")
- print(" [x] Sent 'Hello World!'")
在我们退出应用程序之前,我们需要确认网络缓冲区已经flush而且消息已经确认发送到了RabbitMQ中,我们可以使用下面的代码来关闭连接
- s_connec.close()
Receiving
- connection = pika.BlockingConnection(pika.ConnectionParameters(
- host='localhost'))
- channel = connection.channel()
下一步和之前一样也需要确认队列是否存在,使用 queue_declare 创建一个队列。 你可能会问为什么还需要在创建一次队列,我们在上面的代码中已经创建了一次了。因为我们不能确认队列是否已经存在了,如果我们的服务端还未启动,队列也就没有创建,这个时候客户端启动了,就找不到队列。为了避免这个问题就需要在客户端和服务端均创建一下,这样就能保证无论是服务端还是客户端先启动队列都存在
- channel.queue_declare(queue='hello')
- 可以在服务器上通过执行以下命令查看队列信息
- $ sudo rabbitmqctl list_queues
从队列接收消息要更复杂一些,它需要为队列订阅一个 callback 函数来进行接收。当我们接收一个消息后,这个 callback 函数将会被 pika函数库自动调用, 在我们的这个实例里面这个函数将用来打印接收的消息内容到屏幕
- def callback(ch, method, properties, body):
- print(" [x] Received %r" % body)
下一步我们需要告诉RabbitMQ这个特殊的 callback 函数需要从我们的hello队列接收消息
- channel.basic_consume(callback,
- queue='hello',
- no_ack=True)
no_ack 参数将在后面的部分讲解
- print(' [*] Waiting for messages. To exit press CTRL+C')
- channel.start_consuming()
完整代码:
- import pika
- connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
- channel = connection.channel()
- channel.queue_declare(queue='hello')
- channel.basic_publish(exchange='',
- routing_key='hello',
- body='Hello World!')
- print(" [x] Sent 'Hello World!'")
- connection.close()

Consumer:receive.py
- import pika
- def callback(ch, method, properties, body):
- print(" [x] Received %r" % body)
- connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
- channel = connection.channel()
- channel.queue_declare(queue='hello')
- channel.basic_consume(callback,
- queue='hello',
- no_ack=True)
- print(' [*] Waiting for messages. To exit press CTRL+C')
- channel.start_consuming()
二、python系列之 RabbitMQ - work queues
预备
- import pika
- import sys
- message = ' '.join(sys.argv[1:]) or "Hello World"
- channel.basic_publish(exchange='',
- routing_key='worker',
- body=message,
- properties=pika.BasicProperties(delivery_mode = 2,)
- )
- print(" [x] Send %r " % message)
之前老的 receive.py 脚本也需要一些改变,我们对处理模块 callback 函数进行一些修改:它假装对消息中的每个小数点需要1秒时间进行处理,它将会从消息队列中pop一个消息然后执行任务,我们用 worker.py 来命名这个文件
- import time
- def callback(ch, method, properties, body):
- print(" [x] Received %r" % body)
- time.sleep(body.count(b'.'))
- print(" [x] Done")
- ch.basic_ack(delivery_tag = method.delivery_tag)
循环调度(Round-robin dispatching)
- shell1$ python worker.py
- [*] Waiting for messages. To exit press CTRL+C
- shell2$ python worker.py
- [*] Waiting for messages. To exit press CTRL+C
再打开一个终端,运行 new_task.py ,执行多个任务
- shell3$ python new_task.py First message.
- shell3$ python new_task.py Second message..
- shell3$ python new_task.py Third message...
- shell3$ python new_task.py Fourth message....
- shell3$ python new_task.py Fifth message.....
让我们看看两个worker端接收的消息:
- shell1$ python worker.py
- [*] Waiting for messages. To exit press CTRL+C
- [x] Received 'First message.'
- [x] Received 'Third message...'
- [x] Received 'Fifth message.....'
- shell2$ python worker.py
- [*] Waiting for messages. To exit press CTRL+C
- [x] Received 'Second message..'
- [x] Received 'Fourth message....'
默认,RabbitMQ将循环的发送每个消息到下一个Consumer , 平均每个Consumer都会收到同样数量的消息。 这种分发消息的方式成为 循环调度(round-robin)
- import pika
- import sys
- connec = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
- channel = connec.channel()
- channel.queue_declare(queue='worker')
- message = ' '.join(sys.argv[1:]) or "Hello World"
- channel.basic_publish(exchange='',
- routing_key='worker',
- body=message,
- properties=pika.BasicProperties(delivery_mode = 2,)
- )
- print(" [x] Send %r " % message)
worker.py
- import time
- import pika
- connect = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
- channel = connect.channel()
- channel.queue_declare('worker')
- def callback(ch, method, properties,body):
- print(" [x] Received %r" % body)
- time.sleep(body.count(b'.'))
- print(" [x] Done")
- ch.basic_ack(delivery_tag = method.delivery_tag)
- channel.basic_consume(callback,
- queue='worker',
- )
- channel.start_consuming()
消息确认(Message acknowledgment)
执行一个任务能消耗几秒. 你可能想知道当一个consumer在执行一个艰巨任务或执行到一半是死掉了会发生什么。就我们当前的代码而言,一旦RabbitMQ 的分发完消息给 consumer后 就立即从内存中移除该消息。这样的话,如果一个worker刚启动你就结束掉,那么消息就丢失了。那么所有发送给这个 worker 的还没有处理完成的消息也将丢失。
- def callback(ch, method, properties, body):
- print " [x] Received %r" % (body,)
- time.sleep( body.count('.') )
- print " [x] Done"
- ch.basic_ack(delivery_tag = method.delivery_tag)
- channel.basic_consume(callback,
- queue='hello')
使用这个代码我们能确保即使在程序运行中使用CTRL+C结束worker进程也不会有消息丢失。之后当worker死掉之后所有未确认的消息将会重新进行转发。
- 忘了 acknowlegement
- 忘记设置basic_ack是一个经常犯也很容易犯的错误,但后果是很严重的。当客户端退出后消息将会重新转发,但RabbitMQ会因为不能释放那些没有回复的消息而消耗越来越多的内存
- 为了调试(debug)这种类型的错误,你可以使用 rabbitmqctl 打印 message_unacknowledged 字段:
- $ sudo rabbitmqctl list_queues name messages_ready messages_unacknowledged
- Listing queues ...
- hello 0 0
- ...done
消息持久化(Message durability)
我们已经学习了即使客户端死掉了任务也不会丢失。但是如果RabbitMQ服务停止了的话,我们的任务还是会丢失。
- channel.queue_declare(queue='hello', durable=True
尽管此命令本身定义是正确的,但我们设置后还是不会工作。因为我们已经定义了个名为 hello ,但不是durable属性的队列。RabbitMQ不允许你重新定义一个已经存在、但属性不同的queue。RabbitMQ 将会给定义这个属性的程序返回一个错误。但这里有一个快速的解决方法:让我们定义个不同名称的队列,比如 task_queue:
- channel.queue_declare(queue='task_queue', durable=True)
这个 queue_declare 需要在 生产者(producer) 和消费方(consumer) 代码中都进行设置。
- channel.basic_publish(exchange='',
- routing_key="task_queue",
- body=message,
- properties=pika.BasicProperties(
- delivery_mode = 2, # make message persistent
- ))
消息持久化的注意点
公平调度(Fair dispatch)
- channel.basic_qos(prefetch_count=1)
代码汇总
- import pika
- import sys
- connection = pika.BlockingConnection(pika.ConnectionParameters(
- host='localhost'))
- channel = connection.channel()
- channel.queue_declare(queue='task_queue', durable=True) # 设置队列为持久化的队列
- message = ' '.join(sys.argv[1:]) or "Hello World!"
- channel.basic_publish(exchange='',
- routing_key='task_queue',
- body=message,
- properties=pika.BasicProperties(
- delivery_mode = 2, # 设置消息为持久化的
- ))
- print(" [x] Sent %r" % message)
- connection.close()
new_task.py 脚本
- #!/usr/bin/env python
- import pika
- import time
- connection = pika.BlockingConnection(pika.ConnectionParameters(
- host='localhost'))
- channel = connection.channel()
- channel.queue_declare(queue='task_queue', durable=True) # 设置队列持久化
- print(' [*] Waiting for messages. To exit press CTRL+C')
- def callback(ch, method, properties, body):
- print(" [x] Received %r" % body)
- time.sleep(body.count(b'.'))
- print(" [x] Done")
- ch.basic_ack(delivery_tag = method.delivery_tag)
- channel.basic_qos(prefetch_count=1) # 消息未处理完前不要发送信息的消息
- channel.basic_consume(callback,
- queue='task_queue')
- channel.start_consuming()
二、 python系列之 RabbitMQ -- Publish/Subscribe
前面的部分我们创建了一个工作队列(work queue). 设想是每个任务都能分发到一个worker,这一部分我们将会做一些完全不同的事情 -- 我们将会分发一个消息到多个消费方(consumer),这种模式被誉为发布/订阅(publish/subscribe)模式
为了阐明这种模式,我们将要创建一个简单的日志系统,由两部分程序组成 -- 第一部分将要发布日志消息,第二部分接收并打印
在我们的日志系统中每个接收程序(receiver)将接收消息并复制消息内容,这样我们将会运行一个receiver 记录日志到磁盘;与此同时我们运行另一个receiver输入日志到屏幕查看。
本质上,发布日志消息将会广播到所有的receivers
交换 (Exchanges)
- channel.exchange_declare(exchange='logs',
- type='fanout')
fanout exchange非常简单,你从这个名字中就能猜出来,它将从Producer方收到的消息广播给所有他知道的receiver方。而这正是我们的logger记录所需要的消息。
- $ sudo rabbitmqctl list_exchanges
- Listing exchanges ...
- logs fanout
- amq.direct direct
- amq.topic topic
- amq.fanout fanout
- amq.headers headers
- ...done.
在这个列表中有一些amq.* exchange和默认的exchange,这些都是默认创建的,但是这些未必是你所需要的。
- channel.basic_publish(exchange='',
- routing_key='hello',
- body=message)
这个exchange参数就是这个exchange的名字. 空字符串标识默认的或者匿名的exchange:如果存在routing_key, 消息路由到routing_key指定的队列中。
- channel.basic_publish(exchange='logs',
- routing_key='',
- body=message)
临时队列( Temporary queues )
你应该记得我们之前使用有一个特定名字的队列( hello、task_queue). 设置队列名对我们来说是至关重要的 --- 我们需要给消费方指定同样的队列名字。 要在生产者和消费者之间共享队列,给队列设置一个名字是非常重要的。
- result = channel.queue_declare()
这样, result.method.queue 包含一个随机的队列名, 比如:看起来像 amq.gen-JzTY20BRgKO-HjmUJj0wLg.
- result = channel.queue_declare(exclusive=True)
绑定(Bindings)
- channel.queue_bind(exchange='logs',
- queue=result.method.queue)
现在logs exchange 将要发送消息到我们的队列
- 你可以在Server端通过rabbitmqctl list_bindings命令查看绑定信息
汇总(Putting it all together)
- import pika
- import sys
- connection = pika.BlockingConnection(pika.ConnectionParameters(
- host='localhost'))
- channel = connection.channel()
- channel.exchange_declare(exchange='logs',
- type='fanout')
- message = ' '.join(sys.argv[1:]) or "info: Hello World!"
- channel.basic_publish(exchange='logs',
- routing_key='',
- body=message)
- print(" [x] Sent %r" % message)
- connection.close()
如你所见, 当建立连接之后我们定义了一个exchange名logs, 由于发布一个消息到一个不存在的exchange是禁止的,所以这一步是必须有的。
- import pika
- connection = pika.BlockingConnection(pika.ConnectionParameters(
- host='localhost'))
- channel = connection.channel()
- channel.exchange_declare(exchange='logs',
- type='fanout')
- result = channel.queue_declare(exclusive=True) # 队列断开后自动删除临时队列
- queue_name = result.method.queue # 队列名采用服务端分配的临时队列
- channel.queue_bind(exchange='logs',
- queue=queue_name)
- print(' [*] Waiting for logs. To exit press CTRL+C')
- def callback(ch, method, properties, body):
- print(" [x] %r" % body)
- channel.basic_consume(callback,
- queue=queue_name,
- no_ack=True)
- channel.start_consuming()
- $ python receive_logs.py > logs_from_rabbit.log
如果你想在屏幕上查看输出的日志,新开一个终端并运行:
- $ python receive_logs.py
当然,发出日志信息:
- $ python emit_log.py
使用 rabbitmqlctl list_bindings 你能验证代码确实创建了你想要的binding和队列。运行两个 receive_logs.py 程序你可以看到:
- $ sudo rabbitmqctl list_bindings
- Listing bindings ...
- logs exchange amq.gen-JzTY20BRgKO-HjmUJj0wLg queue []
- logs exchange amq.gen-vso0PVvyiRIL2WoV3i48Yg queue []
- ...done.
这个结果的解释非常直白: 从 logs exchange 出来的数据发送服务端自动分配的到两个队列名中,这也是我们预期的。
远程过程调用(Remote procedure call (RPC))
在第二课我们学习了怎样使用 工作队列(work queues) 来在多个workers之间分发需要消时的 任务
但是如果我们需要在远程的服务器上调用一个函数并获取返回结果 我们需要怎么做呢?well这是一个不一样的故事。 这中模式通常被称为远程过程调用或RPC
在这一刻我们将要使用RabbitMQ来建立一个RPC系统:一个客户端和一个可扩展的RPC服务。由于我们没有任何耗时的任务值得分配,我们将要创建一个仿RPC服务并返回斐波纳契数值
客户端接口(Client interface)
- fibonacci_rpc = FibonacciRpcClient()
- result = fibonacci_rpc.call(4)
- print("fib(4) is %r" % result)
回调队列(callback queue)
- result = channel.queue_declare(exclusive=True)
- callback_queue = result.method.queue
- channel.basic_publish(exchange='',
- routing_key='rpc_queue',
- properties=pika.BasicProperties(
- reply_to = callback_queue,
- ),
- body=request)
关联ID (Correlation ID)
概要(Summary)
整合
- #!/usr/bin/env python
- import pika
- connection = pika.BlockingConnection(pika.ConnectionParameters(
- host='localhost'))
- channel = connection.channel()
- channel.queue_declare(queue='rpc_queue')
- def fib(n):
- if n == 0:
- return 0
- elif n == 1:
- return 1
- else:
- return fib(n-1) + fib(n-2)
- def on_request(ch, method, props, body):
- n = int(body)
- print(" [.] fib(%s)" % n)
- response = fib(n)
- ch.basic_publish(exchange='',
- routing_key=props.reply_to,
- properties=pika.BasicProperties(correlation_id = \
- props.correlation_id),
- body=str(response))
- ch.basic_ack(delivery_tag = method.delivery_tag)
- channel.basic_qos(prefetch_count=1)
- channel.basic_consume(on_request, queue='rpc_queue')
- print(" [x] Awaiting RPC requests")
- channel.start_consuming()
- #!/usr/bin/env python
- import pika
- import uuid
- class FibonacciRpcClient(object):
- def __init__(self):
- self.connection = pika.BlockingConnection(pika.ConnectionParameters(
- host='localhost'))
- self.channel = self.connection.channel()
- result = self.channel.queue_declare(exclusive=True)
- self.callback_queue = result.method.queue
- self.channel.basic_consume(self.on_response, no_ack=True,
- queue=self.callback_queue)
- def on_response(self, ch, method, props, body):
- if self.corr_id == props.correlation_id:
- self.response = body
- def call(self, n):
- self.response = None
- self.corr_id = str(uuid.uuid4())
- self.channel.basic_publish(exchange='',
- routing_key='rpc_queue',
- properties=pika.BasicProperties(
- reply_to = self.callback_queue,
- correlation_id = self.corr_id,
- ),
- body=str(n))
- while self.response is None:
- self.connection.process_data_events()
- return int(self.response)
- fibonacci_rpc = FibonacciRpcClient()
- print(" [x] Requesting fib(30)")
- response = fibonacci_rpc.call(30)
- print(" [.] Got %r" % response)
- $ python rpc_server.py
- [x] Awaiting RPC requests
请求一个斐波那契数,运行客户端
- $ python rpc_client.py
- [x] Requesting fib(30)
四、redis
2.在python中操作如下:
set(name, value, ex=None, px=None, nx=False, xx=False)
123456在Redis中设置值,默认,不存在则创建,存在则修改参数:ex,过期时间(秒)px,过期时间(毫秒)nx,如果设置为True,则只有name不存在时,当前set操作才执行xx,如果设置为True,则只有name存在时,岗前set操作才执行setnx(name, value)
1设置值,只有name不存在时,执行设置操作(添加)setex(name, value, time)
123# 设置值# 参数:# time,过期时间(数字秒 或 timedelta对象)psetex(name, time_ms, value)
123# 设置值# 参数:# time_ms,过期时间(数字毫秒 或 timedelta对象)mset(*args, **kwargs)
12345批量设置值如:mset(k1='v1', k2='v2')或mget({'k1':'v1','k2':'v2'})get(name)
1获取值mget(keys, *args)
12345批量获取如:mget('ylr','wupeiqi')或r.mget(['ylr','wupeiqi'])getset(name, value)
1设置新值并获取原来的值getrange(key, start, end)
123456# 获取子序列(根据字节获取,非字符)# 参数:# name,Redis 的 name# start,起始位置(字节)# end,结束位置(字节)# 如: "武沛齐" ,0-3表示 "武"setrange(name, offset, value)
1234# 修改字符串内容,从指定字符串索引开始向后替换(新值太长时,则向后添加)# 参数:# offset,字符串的索引,字节(一个汉字三个字节)# value,要设置的值setbit(name, offset, value)
123456789101112131415161718192021222324252627# 对name对应值的二进制表示的位进行操作# 参数:# name,redis的name# offset,位的索引(将值变换成二进制后再进行索引)# value,值只能是 1 或 0# 注:如果在Redis中有一个对应: n1 = "foo",那么字符串foo的二进制表示为:011001100110111101101111所以,如果执行 setbit('n1',7,1),则就会将第7位设置为1,那么最终二进制则变成011001110110111101101111,即:"goo"# 扩展,转换二进制表示:# source = "武沛齐"source="foo"foriinsource:num=ord(i)bin(num).replace('b','')特别的,如果source是汉字"武沛齐"怎么办?答:对于utf-8,每一个汉字占3个字节,那么"武沛齐"则有9个字节对于汉字,for循环时候会按照 字节 迭代,那么在迭代时,将每一个字节转换 十进制数,然后再将十进制数转换成二进制111001101010110110100110111001101011001010011011111010011011110110010000------------------------------------------------------------------------------------武 沛 齐getbit(name, offset)
1# 获取name对应的值的二进制表示中的某位的值 (0或1)bitcount(key, start=None, end=None)
12345# 获取name对应的值的二进制表示中 1 的个数# 参数:# key,Redis的name# start,位起始位置# end,位结束位置bitop(operation, dest, *keys)
12345678910# 获取多个值,并将值做位运算,将最后的结果保存至新的name对应的值# 参数:# operation,AND(并) 、 OR(或) 、 NOT(非) 、 XOR(异或)# dest, 新的Redis的name# *keys,要查找的Redis的name# 如:bitop("AND",'new_name','n1','n2','n3')# 获取Redis中n1,n2,n3对应的值,然后讲所有的值做位运算(求并集),然后将结果保存 new_name 对应的值中strlen(name)
1# 返回name对应值的字节长度(一个汉字3个字节)incr(self, name, amount=1)
1234567# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。# 参数:# name,Redis的name# amount,自增数(必须是整数)# 注:同incrbyincrbyfloat(self, name, amount=1.0)
12345# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。# 参数:# name,Redis的name# amount,自增数(浮点型)decr(self, name, amount=1)
12345# 自减 name对应的值,当name不存在时,则创建name=amount,否则,则自减。# 参数:# name,Redis的name# amount,自减数(整数)append(key, value)
12345# 在redis name对应的值后面追加内容# 参数:key, redis的namevalue, 要追加的字符串
Hash操作,redis中Hash在内存中的存储格式如下图:

hset(name, key, value)
123456789# name对应的hash中设置一个键值对(不存在,则创建;否则,修改)# 参数:# name,redis的name# key,name对应的hash中的key# value,name对应的hash中的value# 注:# hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)hmset(name, mapping)
12345678# 在name对应的hash中批量设置键值对# 参数:# name,redis的name# mapping,字典,如:{'k1':'v1', 'k2': 'v2'}# 如:# r.hmset('xx', {'k1':'v1', 'k2': 'v2'})hget(name,key)
1# 在name对应的hash中获取根据key获取valuehmget(name, keys, *args)
1234567891011# 在name对应的hash中获取多个key的值# 参数:# name,reids对应的name# keys,要获取key集合,如:['k1', 'k2', 'k3']# *args,要获取的key,如:k1,k2,k3# 如:# r.mget('xx', ['k1', 'k2'])# 或# print r.hmget('xx', 'k1', 'k2')hgetall(name)
1获取name对应hash的所有键值hlen(name)
1# 获取name对应的hash中键值对的个数hkeys(name)
1# 获取name对应的hash中所有的key的值hvals(name)
1# 获取name对应的hash中所有的value的值hexists(name, key)
1# 检查name对应的hash是否存在当前传入的keyhdel(name,*keys)
1# 将name对应的hash中指定key的键值对删除hincrby(name, key, amount=1)
12345# 自增name对应的hash中的指定key的值,不存在则创建key=amount# 参数:# name,redis中的name# key, hash对应的key# amount,自增数(整数)hincrbyfloat(name, key, amount=1.0)
12345678# 自增name对应的hash中的指定key的值,不存在则创建key=amount# 参数:# name,redis中的name# key, hash对应的key# amount,自增数(浮点数)# 自增name对应的hash中的指定key的值,不存在则创建key=amounthscan(name, cursor=0, match=None, count=None)
12345678910111213# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆# 参数:# name,redis的name# cursor,游标(基于游标分批取获取数据)# match,匹配指定key,默认None 表示所有的key# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数# 如:# 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)# 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)# ...# 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕hscan_iter(name, match=None, count=None)
123456789# 利用yield封装hscan创建生成器,实现分批去redis中获取数据# 参数:# match,匹配指定key,默认None 表示所有的key# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数# 如:# for item in r.hscan_iter('xx'):# print item
List操作,redis中的List在在内存中按照一个name对应一个List来存储。如图:

lpush(name,values)
12345678# 在name对应的list中添加元素,每个新的元素都添加到列表的最左边# 如:# r.lpush('oo', 11,22,33)# 保存顺序为: 33,22,11# 扩展:# rpush(name, values) 表示从右向左操作lpushx(name,value)
1234# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边# 更多:# rpushx(name, value) 表示从右向左操作llen(name)
1# name对应的list元素的个数linsert(name, where, refvalue, value))
1234567# 在name对应的列表的某一个值前或后插入一个新值# 参数:# name,redis的name# where,BEFORE或AFTER# refvalue,标杆值,即:在它前后插入数据# value,要插入的数据r.lset(name, index, value)
123456# 对name对应的list中的某一个索引位置重新赋值# 参数:# name,redis的name# index,list的索引位置# value,要设置的值r.lrem(name, value, num)
12345678# 在name对应的list中删除指定的值# 参数:# name,redis的name# value,要删除的值# num, num=0,删除列表中所有的指定值;# num=2,从前到后,删除2个;# num=-2,从后向前,删除2个lpop(name)
1234# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素# 更多:# rpop(name) 表示从右向左操作lindex(name, index)
1在name对应的列表中根据索引获取列表元素lrange(name, start, end)
12345# 在name对应的列表分片获取数据# 参数:# name,redis的name# start,索引的起始位置# end,索引结束位置ltrim(name, start, end)
12345# 在name对应的列表中移除没有在start-end索引之间的值# 参数:# name,redis的name# start,索引的起始位置# end,索引结束位置rpoplpush(src, dst)
1234# 从一个列表取出最右边的元素,同时将其添加至另一个列表的最左边# 参数:# src,要取数据的列表的name# dst,要添加数据的列表的nameblpop(keys, timeout)
12345678# 将多个列表排列,按照从左到右去pop对应列表的元素# 参数:# keys,redis的name的集合# timeout,超时时间,当元素所有列表的元素获取完之后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞# 更多:# r.brpop(keys, timeout),从右向左获取数据brpoplpush(src, dst, timeout=0)
123456# 从一个列表的右侧移除一个元素并将其添加到另一个列表的左侧# 参数:# src,取出并要移除元素的列表对应的name# dst,要插入元素的列表对应的name# timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞自定义增量迭代
123456789101112131415161718# 由于redis类库中没有提供对列表元素的增量迭代,如果想要循环name对应的列表的所有元素,那么就需要:# 1、获取name对应的所有列表# 2、循环列表# 但是,如果列表非常大,那么就有可能在第一步时就将程序的内容撑爆,所有有必要自定义一个增量迭代的功能:deflist_iter(name):"""自定义redis列表增量迭代:param name: redis中的name,即:迭代name对应的列表:return: yield 返回 列表元素"""list_count=r.llen(name)forindexinxrange(list_count):yieldr.lindex(name, index)# 使用foriteminlist_iter('pp'):itemSet操作,Set集合就是不允许重复的列表
sadd(name,values)
1# name对应的集合中添加元素scard(name)
1获取name对应的集合中元素个数sdiff(keys, *args)
1在第一个name对应的集合中且不在其他name对应的集合的元素集合sdiffstore(dest, keys, *args)
1# 获取第一个name对应的集合中且不在其他name对应的集合,再将其新加入到dest对应的集合中sinter(keys, *args)
1# 获取多一个name对应集合的并集sinterstore(dest, keys, *args)
1# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中sismember(name, value)
1# 检查value是否是name对应的集合的成员smembers(name)
1# 获取name对应的集合的所有成员smove(src, dst, value)
1# 将某个成员从一个集合中移动到另外一个集合spop(name)
1# 从集合的右侧(尾部)移除一个成员,并将其返回srandmember(name, numbers)
1# 从name对应的集合中随机获取 numbers 个元素srem(name, values)
1# 在name对应的集合中删除某些值sunion(keys, *args)
1# 获取多一个name对应的集合的并集sunionstore(dest,keys, *args)
1# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)
1# 同字符串的操作,用于增量迭代分批获取元素,避免内存消耗太大
有序集合,在集合的基础上,为每元素排序;元素的排序需要根据另外一个值来进行比较,所以,对于有序集合,每一个元素有两个值,即:值和分数,分数专门用来做排序。
zadd(name, *args, **kwargs)
12345# 在name对应的有序集合中添加元素# 如:# zadd('zz', 'n1', 1, 'n2', 2)# 或# zadd('zz', n1=11, n2=22)zcard(name)
1# 获取name对应的有序集合元素的数量zcount(name, min, max)
1# 获取name对应的有序集合中分数 在 [min,max] 之间的个数zincrby(name, value, amount)
1# 自增name对应的有序集合的 name 对应的分数r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)
123456789101112131415161718# 按照索引范围获取name对应的有序集合的元素# 参数:# name,redis的name# start,有序集合索引起始位置(非分数)# end,有序集合索引结束位置(非分数)# desc,排序规则,默认按照分数从小到大排序# withscores,是否获取元素的分数,默认只获取元素的值# score_cast_func,对分数进行数据转换的函数# 更多:# 从大到小排序# zrevrange(name, start, end, withscores=False, score_cast_func=float)# 按照分数范围获取name对应的有序集合的元素# zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)# 从大到小排序# zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)zrank(name, value)
1234# 获取某个值在 name对应的有序集合中的排行(从 0 开始)# 更多:# zrevrank(name, value),从大到小排序zrangebylex(name, min, max, start=None, num=None)
1234567891011121314151617# 当有序集合的所有成员都具有相同的分值时,有序集合的元素会根据成员的 值 (lexicographical ordering)来进行排序,而这个命令则可以返回给定的有序集合键 key 中, 元素的值介于 min 和 max 之间的成员# 对集合中的每个成员进行逐个字节的对比(byte-by-byte compare), 并按照从低到高的顺序, 返回排序后的集合成员。 如果两个字符串有一部分内容是相同的话, 那么命令会认为较长的字符串比较短的字符串要大# 参数:# name,redis的name# min,左区间(值)。 + 表示正无限; - 表示负无限; ( 表示开区间; [ 则表示闭区间# min,右区间(值)# start,对结果进行分片处理,索引位置# num,对结果进行分片处理,索引后面的num个元素# 如:# ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga# r.zrangebylex('myzset', "-", "[ca") 结果为:['aa', 'ba', 'ca']# 更多:# 从大到小排序# zrevrangebylex(name, max, min, start=None, num=None)zrem(name, values)
123# 删除name对应的有序集合中值是values的成员# 如:zrem('zz', ['s1', 's2'])zremrangebyrank(name, min, max)
1# 根据排行范围删除zremrangebyscore(name, min, max)
1# 根据分数范围删除zremrangebylex(name, min, max)
1# 根据值返回删除zscore(name, value)
1# 获取name对应有序集合中 value 对应的分数zinterstore(dest, keys, aggregate=None)
12# 获取两个有序集合的交集,如果遇到相同值不同分数,则按照aggregate进行操作# aggregate的值为: SUM MIN MAXzunionstore(dest, keys, aggregate=None)
12# 获取两个有序集合的并集,如果遇到相同值不同分数,则按照aggregate进行操作# aggregate的值为: SUM MIN MAXzscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)
1# 同字符串相似,相较于字符串新增score_cast_func,用来对分数进行操作
其他常用操作
delete(*names)
1# 根据删除redis中的任意数据类型exists(name)
1# 检测redis的name是否存在keys(pattern='*')
1234567# 根据模型获取redis的name# 更多:# KEYS * 匹配数据库中所有 key 。# KEYS h?llo 匹配 hello , hallo 和 hxllo 等。# KEYS h*llo 匹配 hllo 和 heeeeello 等。# KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hilloexpire(name ,time)
1# 为某个redis的某个name设置超时时间rename(src, dst)
1# 对redis的name重命名为move(name, db))
1# 将redis的某个值移动到指定的db下randomkey()
1# 随机获取一个redis的name(不删除)type(name)
1# 获取name对应值的类型scan(cursor=0, match=None, count=None)
scan_iter(match=None, count=None)
1# 同字符串操作,用于增量迭代获取key
4、管道
redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作,如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定多个命令,并且默认情况下一次pipline 是原子性操作。
|
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import redispool = redis.ConnectionPool(host='10.211.55.4', port=6379)r = redis.Redis(connection_pool=pool)# pipe = r.pipeline(transaction=False)pipe = r.pipeline(transaction=True)#True为打开同时请求多个指令的功能pipe.set('name', 'alex')pipe.set('role', 'sb')pipe.execute() |
python操作rabbitmq、redis的更多相关文章
- 使用python操作RabbitMQ,Redis,Memcache,SQLAlchemy 其二
一.概念 1.Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...
- 使用python操作RabbitMQ,Redis,Memcache,SQLAlchemy 其一
一.概念 1.Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...
- Python之路【第九篇】:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy
Python之路[第九篇]:Python操作 RabbitMQ.Redis.Memcache.SQLAlchemy Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用 ...
- 文成小盆友python-num12 Redis发布与订阅补充,python操作rabbitMQ
本篇主要内容: redis发布与订阅补充 python操作rabbitMQ 一,redis 发布与订阅补充 如下一个简单的监控模型,通过这个模式所有的收听者都能收听到一份数据. 用代码来实现一个red ...
- Python操作 RabbitMQ、Redis、Memcache
Python操作 RabbitMQ.Redis.Memcache Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数 ...
- python - 操作RabbitMQ
python - 操作RabbitMQ 介绍 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议.MQ全称为Mess ...
- python操作RabbitMQ(不错)
一.rabbitmq RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列 ...
- Python操作RabbitMQ
RabbitMQ介绍 RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现的产品,RabbitMQ是一个消息代理,从“生产者”接收消息并传递消 ...
- Python之路第十二天,高级(4)-Python操作rabbitMQ
rabbitMQ RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列(M ...
- Python菜鸟之路:Python基础-Python操作RabbitMQ
RabbitMQ简介 rabbitmq中文翻译的话,主要还是mq字母上:Message Queue,即消息队列的意思.rabbitmq服务类似于mysql.apache服务,只是提供的功能不一样.ra ...
随机推荐
- const,var,let笔记
js中定义变量的方式有三种const.var.let const 作用域:全局作用域或函数作用域 定义的变量不可修改,且必须初始化 eg: const a= 1; a= 2; console.log( ...
- idea中如何debug本地maven项目
方法一:使用maven中的jetty插件调试本地maven项目 1.打断点 2.右击“jetty:run”,选择Debug运行 3.浏览器发送http请求,开始调试 方法二:利用远程调试功能调试本地m ...
- Spring_自动装配
Beans-autowire.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns=& ...
- RBAC权限控制
1.什么是RBAC权限模型rity2.RBAC权限模型表设计3.整合Mybatis数据库4.UserDetailsService5.动态查询数据库登陆6.动态权限角色拦截 什么是RBAC权限模型r 基 ...
- maven中pom.xml标签介绍
pom作为项目对象模型.通过xml表示maven项目,使用pom.xml来实现.主要描述了项目:包括配置文件:开发者需要遵循的规则,缺陷管理系统,组织和licenses,项目的url,项目的依赖性,以 ...
- 转: 在hibernate中查询使用list,map定制返回类型
在使用hibernate进行查询时,使用得最多的还是通过构建hql进行查询了.在查询的过程当中,除使用经常的查询对象方法之外,还会遇到查询一个属性,或一组聚集结果的情况.在这种情况下,我们通常就需要对 ...
- CheckBox复选框控件
CheckBox复选框控件 一.简介 1. 2.类结构图 二.CheckBox复选框控件使用方法 这里是使用java代码在LinearLayout里面添加控件 1.新建LinearLayout布局 2 ...
- shell awk命令
语法: awk '{command}' filename 多个命令以分号分隔. awk 'BEGIN {command1} {command2} END{command3}' 注意:BEGIN , ...
- vuejs,angularjs,reactjs介绍
1.https://www.zhihu.com/question/263782718/answer/274623434 (Vue 除了SPA(单页面应用)还适用于什么类型网站?) 而一个项目采用什么前 ...
- 【scala】异常处理
Scala 的异常处理和其它语言比如 Java 类似. 抛出异常 Scala 抛出异常的方法和 Java一样,使用 throw 方法 throw new IllegalArgumentExceptio ...