Description

Given a weighted directed graph, we define the shortest path as the path who has the smallest length among all the path connecting the source vertex to the target vertex. And if two path is said to be non-overlapping, it means that the two path has no common edge. So, given a weighted directed graph, a source vertex and a target vertex, we are interested in how many non-overlapping shortest path could we find out at most.

Input

Input consists of multiple test cases. The first line of each test case, there is an integer number N (1<=N<=100), which is the number of the vertices. Then follows an N * N matrix, represents the directed graph. Each element of the matrix is either non-negative integer, denotes the length of the edge, or -1, which means there is no edge. At the last, the test case ends with two integer numbers S and T (0<=S, T<=N-1), that is, the starting and ending points. Process to the end of the file.

Output

For each test case, output one line, the number of the the non-overlapping shortest path that we can find at most, or "inf" (without quote), if the starting point meets with the ending.

题目大意:一有向有权图,给源点、汇点,问从源点到汇点有多少条不重叠(没有重边)的最短路径

思路:一次floyd,把dis[s][i] + edge[i][j] + dis[j][t] == dis[s][t]的边(最短路径上的边)都加入网络流的图,容量为1。最大流为答案(容量为1,那么这些从源点出发的流都不会有重叠边)。

PS:据说矩阵的对角线上的点不都是0,我把AC代码上的mat[i][i] = st[i][i] = 0注释掉了,果然WA了,这是闹哪样……当然要是你不使用类似于[i][i]这种边就不会有这种烦恼……

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; const int MAXN = 110;
const int MAXE = MAXN * MAXN * 2;
const int INF = 0x7f7f7f7f; struct Dinic {
int n, m, st, ed, ecnt;
int head[MAXN];
int cur[MAXN], d[MAXN];
int to[MAXE], next[MAXE], flow[MAXE], cap[MAXE]; void init(int ss, int tt, int nn) {
st = ss; ed = tt; n = nn;
ecnt = 2;
memset(head, 0, sizeof(head));
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = 0; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = 0; flow[ecnt] = 0; next[ecnt] = head[v]; head[v] = ecnt++;
} bool bfs() {
memset(d, 0, sizeof(d));
queue<int> que; que.push(st);
d[st] = 1;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(!d[v] && cap[p] > flow[p]) {
d[v] = d[u] + 1;
que.push(v);
if(v == ed) return true;
}
}
}
return d[ed];
} int dfs(int u, int a) {
if(u == ed || a == 0) return a;
int outflow = 0, f;
for(int &p = cur[u]; p; p = next[p]) {
int v = to[p];
if(d[u] + 1 == d[v] && (f = dfs(v, min(a, cap[p] - flow[p]))) > 0) {
flow[p] += f;
flow[p ^ 1] -= f;
outflow += f;
a -= f;
if(a == 0) break;
}
}
return outflow;
} int Maxflow() {
int ans = 0;
while(bfs()) {
for(int i = 0; i <= n; ++i) cur[i] = head[i];
ans += dfs(st, INF);
}
return ans;
}
} G; int mat[MAXN][MAXN];
int st[MAXN][MAXN]; #define REP(i, t) for(int i = 1; i <= t; ++i) void floyd(int n) {
REP(k, n) REP(i, n) REP(j, n) {
if(st[i][k] == -1 || st[k][j] == -1) continue;
if(st[i][j] == -1 || st[i][j] > st[i][k] + st[k][j]) st[i][j] = st[i][k] + st[k][j];
}
//REP(i, n) REP(j, n) printf("%d\n", st[i][j]);
} int main() {
int n, s, t;
while(scanf("%d", &n) != EOF) {
REP(i, n) REP(j, n) {
scanf("%d", &mat[i][j]);
st[i][j] = mat[i][j];
}
REP(i, n) st[i][i] = mat[i][i] = 0;
scanf("%d%d", &s, &t);
++s, ++t;
if(s == t) {
printf("inf\n");
continue;
}
floyd(n);
G.init(s, t, n);
REP(i, n) REP(j, n)
if(i != j && mat[i][j] != -1 && st[s][i] != -1 && st[j][t] != -1
&& st[s][t] == st[s][i] + mat[i][j] + st[j][t]) G.add_edge(i, j, 1);
printf("%d\n", G.Maxflow());
}
}

  

ZOJ 2760 How Many Shortest Path(最短路径+最大流)的更多相关文章

  1. zoj 2760 How Many Shortest Path【最大流】

    不重叠最短路计数. 先弗洛伊德求一遍两两距离(其实spfa或者迪杰斯特拉会更快但是没必要懒得写),然后设dis为st最短距离,把满足a[s][u]+b[u][v]+a[v][t]==dis的边(u,v ...

  2. zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...

  3. ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]

    人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...

  4. ZOJ 2760 How Many Shortest Path (不相交的最短路径个数)

    [题意]给定一个N(N<=100)个节点的有向图,求不相交的最短路径个数(两条路径没有公共边). [思路]先用Floyd求出最短路,把最短路上的边加到网络流中,这样就保证了从s->t的一个 ...

  5. ZOJ 2760 How Many Shortest Path

    题目大意:给定一个带权有向图G=(V, E)和源点s.汇点t,问s-t边不相交最短路最多有几条.(1 <= N <= 100) 题解:从源点汇点各跑一次Dij,然后对于每一条边(u,v)如 ...

  6. ZOJ 2760 How Many Shortest Path(Dijistra + ISAP 最大流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给定一个带权有向图 G=(V, E)和源点 s.汇点 t ...

  7. SPOJ 15. The Shortest Path 最短路径题解

    本题就是给出一组cities.然后以下会询问,两个cities之间的最短路径. 属于反复询问的问题,临时我仅仅想到使用Dijsktra+heap实现了. 由于本题反复查询次数也不多,故此假设保存全部最 ...

  8. [ZOJ2760]How Many Shortest Path(floyd+最大流)

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给你一个一个n*n(n<=100)的有向图,问你从s到 ...

  9. [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

随机推荐

  1. 高性能MySQL--innodb中事务的隔离级别与锁的关系

    最近买了<高性能MySQL>这本书回来看,从中收益颇多!我来一吐为快! 我们都知道事务,那么在什么情况下我们需要使用事务呢? 银行应用是解释事务的一个经典例子.假设一个银行的数据库有两张表 ...

  2. sea.js模块化工具

    sea.js 一. sea.js向全局中引入了两个变量seajs.define: 1.seajs用加载文件 seajs.use(deps,callback)异步引入入口模块 路径要以sea.js文件所 ...

  3. yii学习笔记(1),目录结构和请求过程

    最近找找工作面试,发现很多要求会yii.于是准备学习一个新的框架 先在腾讯课堂找了个视频看了一下,然后去网上现在了“归档文件”(还有一种方式是通过php的包管理工具“composer”安装) 归档文件 ...

  4. 【篇一】Python安装与初识

    一.python3.6安装 windows: 1.下载安装包 https://www.python.org/downloads/ 2.安装 默认安装路径:C:\python27 3.配置环境变量 [右 ...

  5. golang使用rabbitMQ入门代码

    package main import ( "github.com/streadway/amqp" "log" "time" ) func ...

  6. HyperLedger Fabric 1.4 官方End-2-End运行(8)

    8.1 End-2-End案例简介        Fabric官方提供了实现点对点的Fabric网络示例,该网络有两个组织(organizations),一个组织有两种节点(Peer),通过Kafka ...

  7. 【HDOJ-1081】To The Max(动态规划)

    To the Max Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem ...

  8. 20145234黄斐《Java程序设计》第二周学习总结

    教材学习内容总结 类型 Java可区分为基本类型(Primitive Type)和类类型(Class Type),其中类类型也叫参考类型(Reference Type). 字节类型,也叫byte类型, ...

  9. 成都Uber优步司机奖励政策(1月7日)

    1月7日 奖励政策 滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblog ...

  10. hive 更改列的位置时遇到的问题

    hive > desc formatted tb_fq; OK col_name data_type comment # col_name data_type comment name stri ...