Language:
Default
Map Labeler
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1815   Accepted: 599

Description

Map generation is a difficult task in cartography. A vital part of such task is automatic labeling of the cities in a map; where for each city there is text label to be attached to its location, so that no two labels overlap. In this problem, we are concerned
with a simple case of automatic map labeling. 



Assume that each city is a point on the plane, and its label is a text bounded in a square with edges parallel to x and y axis. The label of each city should be located such that the city point appears exactly in the middle of the top or bottom edges of the
label. In a good labeling, the square labels are all of the same size, and no two labels overlap, although they may share one edge. Figure 1 depicts an example of a good labeling (the texts of the labels are not shown.) 



Given the coordinates of all city points on the map as integer values, you are to find the maximum label size (an integer value) such that a good labeling exists for the map. 

Input

The first line contains a single integer t (1 <= t <= 10), the number of test cases. Each test case starts with a line containing an integer m (3 ≤ m ≤ 100), the number of cities followed by m lines of data each containing a pair of integers; the first integer
(X) is the x and the second one (Y) is the y coordinates of one city on the map (-10000 ≤X, Y≤ 10000). Note that no two cities have the same (x, y) coordinates.

Output

The output will be one line per each test case containing the maximum possible label size (an integer value) for a good labeling.

Sample Input

1
6
1 1
2 3
3 2
4 4
10 4
2 5

Sample Output

2

Source

题意:平面上有n个点。每一个点画一个正方形而且该点要落在正方形上边或者下边的中间。问满足条件的最大正方形的边长是多少。

思路:二分边长mid,建图用2-SAT作为推断条件。

i表示画在上面。~i表示画在以下

if|xi-xj|>=mid continue;

else if |yi-yj|>=2*mid continue;

else if |yi-yj|==0 then i->~j,~i->j,j->~i,~j->i;

else if |yi-yj|>0 then ~i->i,j->~j;

else |yi-yj|>=mid then j->i,~i->~j;

代码:

#include <iostream>
#include <functional>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; #define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 1005;
const int MAXN = 2005;
const int MAXM = 20010;
const int N = 1005; struct Node
{
int x,y;
}node[MAXN]; struct Edge
{
int to,next;
}edge[MAXM]; int tot,head[MAXN];
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];
bool Instack[MAXN];
int top,scc,Index; void init()
{
tot=0;
memset(head,-1,sizeof(head));
} void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
} void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=Index++;
Instack[u]=true;
Stack[top++]=u;
for (int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if (!DFN[v])
{
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if (Low[u]==DFN[u])
{
scc++;
do{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
}while (v!=u);
}
return ;
} bool solvable(int n)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
top=scc=Index=0;
for (int i=0;i<n;i++)
{
if (!DFN[i])
Tarjan(i);
}
for (int i=0;i<n;i+=2)
{
if (Belong[i]==Belong[i^1])
return false;
}
return true;
} bool isok(int mid,int n) //依据mid建图
{
init();
for (int i=0;i<n;i++)
{
for (int j=i+1;j<n;j++)
{
if (abs(node[i].x-node[j].x)>=mid) continue;
if (abs(node[i].y-node[j].y)>=2*mid) continue;
if (node[i].y==node[j].y)
{
addedge(2*i,2*j+1);
addedge(2*j+1,2*i);
addedge(2*j,2*i+1);
addedge(2*i+1,2*j);
}
else if (node[i].y-node[j].y>0&&node[i].y-node[j].y<mid)
{
addedge(2*i+1,2*i);
addedge(2*j,2*j+1);
}
else if (node[j].y-node[i].y>0&&node[j].y-node[i].y<mid)
{
addedge(2*j+1,2*j);
addedge(2*i,2*i+1);
}
else if (node[i].y-node[j].y>=mid)
{
addedge(2*i+1,2*j+1);
addedge(2*j,2*i);
}
else if (node[j].y-node[i].y>=mid)
{
addedge(2*j+1,2*i+1);
addedge(2*i,2*j);
}
}
}
if (solvable(2*n)) return true;
return false;
} void solve(int n) //二分
{
int l=0,r=10000,ans;
while (l<=r)
{
// DBG;
int mid=(l+r)>>1;
if (isok(mid,n))
{
// DBG;
ans=mid;
l=mid+1;
}
else r=mid-1;
}
printf("%d\n",ans);
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j,t,m;
scanf("%d",&t);
while (t--)
{
scanf("%d",&m);
for (i=0;i<m;i++)
scanf("%d%d",&node[i].x,&node[i].y);
solve(m);
}
return 0;
}

Map Labeler (poj 2296 二分+2-SAT)的更多相关文章

  1. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  2. POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat 二分)

    POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat ...

  3. POJ 2296 二分+2-sat

    题目大意: 给定n个点,给每个点都安排一个相同的正方形,使这个点落在正方形的下底边的中间或者上底边的中间,并让这n个正方形不出现相互覆盖,可以共享同一条边,求 这个正方形最大的边长 这里明显看出n个点 ...

  4. POJ 2296 Map Labeler(2-sat)

    POJ 2296 Map Labeler 题目链接 题意: 坐标轴上有N个点.要在每一个点上贴一个正方形,这个正方形的横竖边分别和x,y轴平行,而且要使得点要么在正方形的上面那条边的中点,或者在以下那 ...

  5. POJ 2296 Map Labeler (2-Sat)

    Map Labeler Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1267   Accepted: 409 Descri ...

  6. POJ - 2018 二分+单调子段和

    依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...

  7. poj 2296

    Map Labeler Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2047   Accepted: 682 Descri ...

  8. 【POJ】2296 Map Labeler

    http://poj.org/problem?id=2296 题意:题意:给你n个点,每个点上都放一个正方形,点只能在正方形的上边或下边的中点上,所有正方形大小一样,不能有面积重叠,求最大的正方形.( ...

  9. POJ 2296 Map Labeler

    二分答案 + 2-SAT验证,判断正方形是否相交写起来有点烦,思路还是挺简单的. #include<cstdio> #include<cstring> #include< ...

随机推荐

  1. Spring IOC、对象依赖关系

    Spring IOC.对象依赖关系   2016-09-21 01:36 414人阅读 评论(0) 收藏 举报 本文章已收录于: 版权声明:本文为博主原创文章,未经博主允许不得转载. 引入 Strut ...

  2. python xml.etree.ElementTree解析xml文件获取节点

    <?xml version = "1.0" encoding = "utf-8"?> <root> <body name=&quo ...

  3. tomcat+nginx+redis集群试验

    Nginx负载平衡 + Tomcat + 会话存储Redis配置要点   使用Nginx作为Tomcat的负载平衡器,Tomcat的会话Session数据存储在Redis,能够实现0当机的7x24 运 ...

  4. iOS AVPlayer视频播放器

    代码地址如下:http://www.demodashi.com/demo/11168.html 一.运行效果 二.实现过程 ①.创建播放器avPlayer //创建播放器 url = [url str ...

  5. Linux-查看C语言手册及man的特殊用法

    man命令可以查看c语言库函数的函数原型, 比如 $ man malloc 如果显示 "No manual entry for malloc", 则需要安装 "man-p ...

  6. thinkphp 3.2多语言设置

    1.将CheckLangBehavior.class.php(没有的话去下载完整版)文件放到此目录下:\ThinkPHP\Extend\Behavior 2.修改目录下文件Application\Ho ...

  7. HTML5学习笔记 视频

    许多时髦的网站都提供视频.html5提供了展示视频的标准 检测您的浏览器是否支持html5视频 Web上的视频 直到现在,仍然不存在一项旨在网页上显示视频的标准. 今天,大多数视频是通过插件(比如Fl ...

  8. C# EF使用性能消耗列表 https://msdn.microsoft.com/zh-cn/library/cc853327.aspx

    性能注意事项(实体框架) .NET Framework (current version)   其他版本   本主题介绍 ADO.NET 实体框架的性能特征,并提供一些注意事项帮助改善实体框架应用程序 ...

  9. 转: 利用RabbitMQ、MySQL实现超大用户级别的消息在/离线收发

    由于RabbitMQ中只有队列(queue)才能存储信息,所以用RabbitMQ实现超大用户级别(百万计)的消息在/离线收发需要对每一个用户创建一个永久队列. 但是RabbitMQ节点内存有限,经测试 ...

  10. python selenium--常用函数1

    新建实例driver = webdriver.Chrome() 1.通过标签属性Id查找元素 方法:find_element_by_id(element_id) 实例:driver.find_elem ...