Map Labeler (poj 2296 二分+2-SAT)
|
Language:
Default
Map Labeler
Description
Map generation is a difficult task in cartography. A vital part of such task is automatic labeling of the cities in a map; where for each city there is text label to be attached to its location, so that no two labels overlap. In this problem, we are concerned
with a simple case of automatic map labeling. Assume that each city is a point on the plane, and its label is a text bounded in a square with edges parallel to x and y axis. The label of each city should be located such that the city point appears exactly in the middle of the top or bottom edges of the label. In a good labeling, the square labels are all of the same size, and no two labels overlap, although they may share one edge. Figure 1 depicts an example of a good labeling (the texts of the labels are not shown.) Given the coordinates of all city points on the map as integer values, you are to find the maximum label size (an integer value) such that a good labeling exists for the map.
Input
The first line contains a single integer t (1 <= t <= 10), the number of test cases. Each test case starts with a line containing an integer m (3 ≤ m ≤ 100), the number of cities followed by m lines of data each containing a pair of integers; the first integer
(X) is the x and the second one (Y) is the y coordinates of one city on the map (-10000 ≤X, Y≤ 10000). Note that no two cities have the same (x, y) coordinates. Output
The output will be one line per each test case containing the maximum possible label size (an integer value) for a good labeling.
Sample Input 1 Sample Output 2 Source |
题意:平面上有n个点。每一个点画一个正方形而且该点要落在正方形上边或者下边的中间。问满足条件的最大正方形的边长是多少。
思路:二分边长mid,建图用2-SAT作为推断条件。
i表示画在上面。~i表示画在以下
if|xi-xj|>=mid continue;
else if |yi-yj|>=2*mid continue;
else if |yi-yj|==0 then i->~j,~i->j,j->~i,~j->i;
else if |yi-yj|>0 then ~i->i,j->~j;
else |yi-yj|>=mid then j->i,~i->~j;
代码:
#include <iostream>
#include <functional>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; #define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 1005;
const int MAXN = 2005;
const int MAXM = 20010;
const int N = 1005; struct Node
{
int x,y;
}node[MAXN]; struct Edge
{
int to,next;
}edge[MAXM]; int tot,head[MAXN];
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];
bool Instack[MAXN];
int top,scc,Index; void init()
{
tot=0;
memset(head,-1,sizeof(head));
} void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
} void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=Index++;
Instack[u]=true;
Stack[top++]=u;
for (int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if (!DFN[v])
{
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if (Low[u]==DFN[u])
{
scc++;
do{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
}while (v!=u);
}
return ;
} bool solvable(int n)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
top=scc=Index=0;
for (int i=0;i<n;i++)
{
if (!DFN[i])
Tarjan(i);
}
for (int i=0;i<n;i+=2)
{
if (Belong[i]==Belong[i^1])
return false;
}
return true;
} bool isok(int mid,int n) //依据mid建图
{
init();
for (int i=0;i<n;i++)
{
for (int j=i+1;j<n;j++)
{
if (abs(node[i].x-node[j].x)>=mid) continue;
if (abs(node[i].y-node[j].y)>=2*mid) continue;
if (node[i].y==node[j].y)
{
addedge(2*i,2*j+1);
addedge(2*j+1,2*i);
addedge(2*j,2*i+1);
addedge(2*i+1,2*j);
}
else if (node[i].y-node[j].y>0&&node[i].y-node[j].y<mid)
{
addedge(2*i+1,2*i);
addedge(2*j,2*j+1);
}
else if (node[j].y-node[i].y>0&&node[j].y-node[i].y<mid)
{
addedge(2*j+1,2*j);
addedge(2*i,2*i+1);
}
else if (node[i].y-node[j].y>=mid)
{
addedge(2*i+1,2*j+1);
addedge(2*j,2*i);
}
else if (node[j].y-node[i].y>=mid)
{
addedge(2*j+1,2*i+1);
addedge(2*i,2*j);
}
}
}
if (solvable(2*n)) return true;
return false;
} void solve(int n) //二分
{
int l=0,r=10000,ans;
while (l<=r)
{
// DBG;
int mid=(l+r)>>1;
if (isok(mid,n))
{
// DBG;
ans=mid;
l=mid+1;
}
else r=mid-1;
}
printf("%d\n",ans);
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j,t,m;
scanf("%d",&t);
while (t--)
{
scanf("%d",&m);
for (i=0;i<m;i++)
scanf("%d%d",&node[i].x,&node[i].y);
solve(m);
}
return 0;
}
Map Labeler (poj 2296 二分+2-SAT)的更多相关文章
- Map Labeler POJ - 2296(2 - sat 具体关系建边)
题意: 给出n个点 让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...
- POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat 二分)
POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat ...
- POJ 2296 二分+2-sat
题目大意: 给定n个点,给每个点都安排一个相同的正方形,使这个点落在正方形的下底边的中间或者上底边的中间,并让这n个正方形不出现相互覆盖,可以共享同一条边,求 这个正方形最大的边长 这里明显看出n个点 ...
- POJ 2296 Map Labeler(2-sat)
POJ 2296 Map Labeler 题目链接 题意: 坐标轴上有N个点.要在每一个点上贴一个正方形,这个正方形的横竖边分别和x,y轴平行,而且要使得点要么在正方形的上面那条边的中点,或者在以下那 ...
- POJ 2296 Map Labeler (2-Sat)
Map Labeler Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1267 Accepted: 409 Descri ...
- POJ - 2018 二分+单调子段和
依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...
- poj 2296
Map Labeler Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2047 Accepted: 682 Descri ...
- 【POJ】2296 Map Labeler
http://poj.org/problem?id=2296 题意:题意:给你n个点,每个点上都放一个正方形,点只能在正方形的上边或下边的中点上,所有正方形大小一样,不能有面积重叠,求最大的正方形.( ...
- POJ 2296 Map Labeler
二分答案 + 2-SAT验证,判断正方形是否相交写起来有点烦,思路还是挺简单的. #include<cstdio> #include<cstring> #include< ...
随机推荐
- WebDriver API——第2部分Exceptions
Exceptions that may happen in all the webdriver code. exception selenium.common.exceptions.ElementNo ...
- 投票ajax请求代码(点赞代码)
function vote(url, arr) { jq.ajax({ cache: false, async: false, url: url, type: 'post', data: {info_ ...
- Protocol Informatics (PI项目)【基于网络轨迹的协议逆向工程文献学习】
Protocol Informatics[基于网络轨迹的协议逆向工程文献学习]by tsy 声明: 1)本报告由博客园bitpeach撰写,版权所有,免费转载,请注明出处,并请勿作商业用途.恕作者著作 ...
- UIActivityViewController实现系统原生分享
代码地址如下:http://www.demodashi.com/demo/11042.html 一.效果预览 二.接下来介绍UIActivityViewController,跟我动手做 1.创建要分享 ...
- (C#)Windows Shell 外壳编程系列1 - 基础,浏览一个文件夹
1 - 基础,浏览一个文件夹 我们知道,在win32中是以外壳名字空间的形式来组织文件系统的,在外壳名字空间里的每一个对象(注)都实现了一个IShellFolder的接口,通过这个接口我们可以直接查询 ...
- kettle--组件(1)--值映射
组件:值映射 如下如所示: 首先,给出官方给出的文档: 个人理解: Target field name:可以理解为将source column的字段复制为另一个target column的名字. De ...
- C# -- 使用递归列出文件夹目录及目录下的文件 神技do{}while(false)
C# -- 使用递归列出文件夹目录及目录下的文件 使用递归列出文件夹目录及目录的下文件 1.使用递归列出文件夹目录及目录下文件,并将文件目录结构在TreeView控件中显示出来. 新建一个WinFor ...
- Scrapy使用问题整理(转载)
转载自:http://blog.csdn.net/heu07111121/article/details/50832999 最近尝试使用Scrapy进行数据抓取,并尝试在windows7 64位系 ...
- sql server中Join有几种
JOIN: 如果表中有至少一个匹配,则返回行 (也就是 inner join)LEFT JOIN: 即使右表中没有匹配,也从左表返回所有的行RIGHT JOIN: 即使左表中没有匹配,也从右表返回所有 ...
- Python 实现字符串转换成列表 实现str转换list
其中Python strip() 方法用于移除字符串头尾指定的字符 split()就是将一个字符串分裂成多个字符串组成的列表 >>> image ='1.jsp,2.jsp,3.js ...