https://vjudge.net/problem/UVA-10214

题意:你站在原点,每个坐标位置有一棵高度相同的树,问能看到多少棵树

ans=Σ gcd(x,y)=1

欧拉函数搞搞

#include<cstdio>
#include<algorithm>
using namespace std;
int phi[],p[],sum[],cnt;
bool v[];
int main()
{
phi[]=;
for(int i=;i<=;i++)
{
if(!v[i])
{
p[++cnt]=i;
phi[i]=i-;
}
for(int j=;j<=cnt;j++)
{
if(i*p[j]>) continue;
v[i*p[j]]=true;
if(i%p[j]) phi[i*p[j]]=phi[i]*(p[j]-);
else
{
phi[i*p[j]]=phi[i]*p[j];
break;
}
}
}
int a,b; long long ans;
while(scanf("%d%d",&a,&b)!=EOF)
{
if(!a) return ;
ans=;
ans+=b+;
for(int i=;i<=a;i++)
{
ans+=1ll*b/i*phi[i];
for(int j=b/i*i+;j<=b;j++) ans+=__gcd(i,j)==;
}
ans<<=;
printf("%.7lf\n",1.0*ans/(1ll*a*b*+*(a+b)));
}
}

UVA 10214 Trees in a Wood的更多相关文章

  1. UVa 10214 - Trees in a Wood.(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVA 10214 Trees in a Wood(欧拉函数)

    题意:给你a.b(a<=2000,b<=2000000),问你从原点可以看到范围在(-a<=x<=a,-b<=y<=b)内整数点的个数 题解:首先只需要计算第一象限 ...

  3. UVa 10214 Trees in a Wood. (数论-欧拉函数)

    题意:给定一个abs(x) <= a, abs(y) <= b,除了原点之外的整点各有一棵树,可以相互阻挡,求从原点可以看到多少棵树. 析:由于a < b,所以我们可以一列一列的统计 ...

  4. Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。

    /** 题目:Trees in a Wood. UVA 10214 链接:https://vjudge.net/problem/UVA-10214 题意:给定a,b求 |x|<=a, |y|&l ...

  5. UVA.122 Trees on the level(二叉树 BFS)

    UVA.122 Trees on the level(二叉树 BFS) 题意分析 给出节点的关系,按照层序遍历一次输出节点的值,若树不完整,则输出not complete 代码总览 #include ...

  6. UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.

    题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...

  7. Trees in a Wood UVA - 10214 欧拉函数模板

    太坑惹,,,没用longlong各种WA #include <iostream> #include <string.h> #include <cstdio> #in ...

  8. UVA 122 -- Trees on the level (二叉树 BFS)

     Trees on the level UVA - 122  解题思路: 首先要解决读数据问题,根据题意,当输入为“()”时,结束该组数据读入,当没有字符串时,整个输入结束.因此可以专门编写一个rea ...

  9. uva 122 trees on the level——yhx

    题目如下:Given a sequence of binary trees, you are to write a program that prints a level-order traversa ...

随机推荐

  1. Redis+Keepalived高可用方案详细分析

    背景 目前,Redis集群的官方方案还处在开发测试中,未集成到稳定版中.且目前官方开发中的Redis Cluster提供的功能尚不完善(可参考官方网站或http://www.redisdoc.com/ ...

  2. Block的声明与定义语法

    Block的声明 Block的声明与函数指针的声明类似 返回值类型(^变量名)(参数列表) Block的定义 ^返回值类型(参数列表) { 表达式 } 其中: 1 如果返回值类型是void,可以省略 ...

  3. coding.net 版本控制

    这是版本测试的所有内容,其中用到了  git 和coding的远程连接. 代码及版本控制 git地址:https://git.coding.net/tianjiping/11111.git

  4. sql分页使用join提高性能

    今天在分析系统中的分页sql时意外知道了使用join可以提高分页性能. 逻辑是join部分使用单一表,单一字段排序分页,然后join大表.

  5. android入门 — AlertDialog对话框

    常见的对话框主要分为消息提示对话框.确认对话框.列表对话框.单选对话框.多选对话框和自定义对话框. 对话框可以阻碍当前的UI线程,常用于退出确认等方面. 在这里主要的步骤可以总结为: 1.创建Aler ...

  6. TCP系列27—窗口管理&流控—1、概述

    在前面的内容中我们依次介绍了TCP的连接建立和终止过程和TCP的各种重传方式.接着我们在这部分首先关注交互式应用TCP连接相关内容如延迟ACK.Nagle算法.Cork算法等,接着我们引入流控机制(f ...

  7. TCP系列13—重传—3、协议中RTO计算和RTO定时器维护

    从上一篇示例中我们可以看到在TCP中有一个重要的过程就是决定何时进行超时重传,也就是RTO的计算更新.由于网络状况可能会受到路由变化.网络负载等因素的影响,因此RTO也必须跟随网络状况动态更新.如果T ...

  8. 什么是Oracle的分区表 (转 作者 陈字文)

    假设我们现在正在酝酿经营一家图书馆,最初,我们只有十本书提供给大家来阅读和购买.对于十本书而言,我们可能只需要一个书架格子将其作为保存这十本书的容器就足够了,因为任何一个人都可以很轻松的扫一眼就可以将 ...

  9. sql sever 数据表

    对视图进行操作,要在第三块区域进行添加记录操作,回车,然后会同步到所有相关数据表中. 记录不是列,而是行,不要混淆. 第二块区域是各个属性,就是说明: 第一块区域是要进行显示的字段,选中什么 显示什么 ...

  10. 透彻掌握Promise的使用,读这篇就够了

    透彻掌握Promise的使用,读这篇就够了 Promise的重要性我认为我没有必要多讲,概括起来说就是必须得掌握,而且还要掌握透彻.这篇文章的开头,主要跟大家分析一下,为什么会有Promise出现. ...