Codeforces Round #274 (Div. 2) Riding in a Lift(DP 前缀和)
2 seconds
256 megabytes
standard input
standard output
Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.
Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.
Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).
The first line of the input contains four space-separated integers n, a, b, k (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ n, a ≠ b).
Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).
5 2 4 1
2
5 2 4 2
2
5 3 4 1
0
Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.
Notes to the samples:
- In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
- In the second sample there are two possible sequences: (1, 2); (1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
- In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.
【题意】有一n层楼的楼房,可坐电梯上下。初始位置在a层,b层楼门无法打开,所以无法到达。如果你当前在x层,你能走到y层当且仅当|x - y| < |x - b|.
每一次有效的移动可到达一个楼层,然后把楼层号写下,连续的移动就可写下一个序列。
问经过k次连续的移动后,产生的序列种数。
【分析】DP。dp[i][j]表示第j次移动到达i层楼的序列数,dp[i][j]=∑(dp[能够到达i层楼的楼层][j-1])%mod。所以这里需要求一个前缀和,然后去掉dp[i][j-1]。
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define vi vector<int>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
using namespace std;
typedef long long LL;
const int N = 5e3+;
const int mod = 1e9+;
int n,a,b,k;
LL dp[N][N],sum[N];
int main(){
scanf("%d%d%d%d",&n,&a,&b,&k);
dp[a][]=;
for(int i=;i<=n;i++){
sum[i]=(sum[i-]+dp[i][])%mod;
}
for(int j=;j<=k;j++){
for(int i=;i<=n;i++){
if(i>b){
int low=(i+b)/;
int up=n;
dp[i][j]=((sum[up]-sum[low]+mod)%mod-dp[i][j-]+mod)%mod;
}
else if(i<b){
int low=;
int up=(i+b)&==?(i+b)/:(i+b)/-;;
dp[i][j]=((sum[up]-sum[low]+mod)%mod-dp[i][j-]+mod)%mod;
}
//printf("i:%d j:%d dp:%lld\n",i,j,dp[i][j]);
}
sum[]=;
for(int i=;i<=n;i++){
sum[i]=(sum[i-]+dp[i][j])%mod;
}
}
LL ans=;
for(int i=;i<=n;i++)ans=(ans+dp[i][k])%mod;
printf("%lld\n",ans);
return ;
}
Codeforces Round #274 (Div. 2) Riding in a Lift(DP 前缀和)的更多相关文章
- Codeforces Round #367 (Div. 2) C. Hard problem(DP)
Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...
- Codeforces Round #274 (Div. 1) C. Riding in a Lift 前缀和优化dp
C. Riding in a Lift Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/pr ...
- Codeforces Round #274 Div.1 C Riding in a Lift --DP
题意:给定n个楼层,初始在a层,b层不可停留,每次选一个楼层x,当|x-now| < |x-b| 且 x != now 时可达(now表示当前位置),此时记录下x到序列中,走k步,最后问有多少种 ...
- Codeforces Round #274 (Div. 2) E. Riding in a Lift(DP)
Imagine that you are in a building that has exactly n floors. You can move between the floors in a l ...
- Codeforces Round #274 (Div. 2)
A http://codeforces.com/contest/479/problem/A 枚举情况 #include<cstdio> #include<algorithm> ...
- Codeforces Round #274 (Div. 1) B. Long Jumps 数学
B. Long Jumps Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/problem/ ...
- Codeforces Round #274 (Div. 1) A. Exams 贪心
A. Exams Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/problem/A Des ...
- codeforces水题100道 第八题 Codeforces Round #274 (Div. 2) A. Expression (math)
题目链接:http://www.codeforces.com/problemset/problem/479/A题意:给你三个数a,b,c,使用+,*,()使得表达式的值最大.C++代码: #inclu ...
- Codeforces Round #274 (Div. 2)-C. Exams
http://codeforces.com/contest/479/problem/C C. Exams time limit per test 1 second memory limit per t ...
随机推荐
- Django ORM常用的函数以及修饰词
函数名称或修饰词 说明 filter() 返回符合指定条件的QuerySet exclude() 返回不符合指定条件的QuerySet ordey_by() 串接到QuerySet之后,针对某一指定的 ...
- asp.net 权限管理系统
asp.net webform ,基于组织机构.角色的权限管理系统. 网上找的,挺好.随拿来分享. https://bitbucket.org/zzhi/asp.net
- Tomcat 7下如何利用 catalina.properties 部署公用类
Tomcat 有很多配置文件,其中一个是 catalina.properties ,本文介绍catalina.properties 中的设置项. 一.组成 catalina.properties ...
- Long Parameter List(过长参数列)---要重构的味道
一个函数,它的参数过多是不好的,不好维护和修改,易读性也差,容易出错. 消除过长参数的方法,有如下: 1.在面向对象中,你可以传递一个对象给函数,函数通过访问对象来获得参 ...
- 基于FPGA的HDTV视频图像灰度直方图统计算法设计
随着HDTV的普及,以LCD-TV为主的高清数字电视逐渐进入蓬勃发展时期.与传统CRT电视不同的是,这些高清数字电视需要较复杂的视频处理电路来驱动,比如:模数转换(A/D Converter).去隔行 ...
- 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 父元素与子元素之间的margin-top问题(css hack)
hack: 父元素的盒子包含一个子元素盒子,给子元素盒子一个垂直外边距margin-top,父元素盒子也会往下走margin-top的值,而子元素和父元素的边距则没有发生变化. hytml代码: &l ...
- Intel MKL(Math Kernel Library)
1.Intel MKL简介 Intel数学核心函数库(MKL)是一套高度优化.线程安全的数学例程.函数,面向高性能的工程.科学与财务应用.英特尔 MKL 的集群版本包括 ScaLAPACK 与分布式内 ...
- 初识费用流 模板(spfa+slf优化) 餐巾计划问题
今天学习了最小费用最大流,是网络流算法之一.可以对于一个每条边有一个容量和一个费用(即每单位流的消耗)的图指定一个源点和汇点,求在从源点到汇点的流量最大的前提下的最小费用. 这里讲一种最基础也是最好掌 ...
- parse_str
之前没有遇到过parse_str,其意思就是“把查询字符串解析到变量中”也就是$str会被解析为变量. <?php $data = "a=1&b=2";parse_s ...