Riding in a Lift
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Examples
input
5 2 4 1
output
2
input
5 2 4 2
output
2
input
5 3 4 1
output
0
Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2); (1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  3. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.

【题意】有一n层楼的楼房,可坐电梯上下。初始位置在a层,b层楼门无法打开,所以无法到达。如果你当前在x层,你能走到y层当且仅当|x - y| < |x - b|.

每一次有效的移动可到达一个楼层,然后把楼层号写下,连续的移动就可写下一个序列。

问经过k次连续的移动后,产生的序列种数。

【分析】DP。dp[i][j]表示第j次移动到达i层楼的序列数,dp[i][j]=∑(dp[能够到达i层楼的楼层][j-1])%mod。所以这里需要求一个前缀和,然后去掉dp[i][j-1]。

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define vi vector<int>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
using namespace std;
typedef long long LL;
const int N = 5e3+;
const int mod = 1e9+;
int n,a,b,k;
LL dp[N][N],sum[N];
int main(){
scanf("%d%d%d%d",&n,&a,&b,&k);
dp[a][]=;
for(int i=;i<=n;i++){
sum[i]=(sum[i-]+dp[i][])%mod;
}
for(int j=;j<=k;j++){
for(int i=;i<=n;i++){
if(i>b){
int low=(i+b)/;
int up=n;
dp[i][j]=((sum[up]-sum[low]+mod)%mod-dp[i][j-]+mod)%mod;
}
else if(i<b){
int low=;
int up=(i+b)&==?(i+b)/:(i+b)/-;;
dp[i][j]=((sum[up]-sum[low]+mod)%mod-dp[i][j-]+mod)%mod;
}
//printf("i:%d j:%d dp:%lld\n",i,j,dp[i][j]);
}
sum[]=;
for(int i=;i<=n;i++){
sum[i]=(sum[i-]+dp[i][j])%mod;
}
}
LL ans=;
for(int i=;i<=n;i++)ans=(ans+dp[i][k])%mod;
printf("%lld\n",ans);
return ;
}

Codeforces Round #274 (Div. 2) Riding in a Lift(DP 前缀和)的更多相关文章

  1. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  2. Codeforces Round #274 (Div. 1) C. Riding in a Lift 前缀和优化dp

    C. Riding in a Lift Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/pr ...

  3. Codeforces Round #274 Div.1 C Riding in a Lift --DP

    题意:给定n个楼层,初始在a层,b层不可停留,每次选一个楼层x,当|x-now| < |x-b| 且 x != now 时可达(now表示当前位置),此时记录下x到序列中,走k步,最后问有多少种 ...

  4. Codeforces Round #274 (Div. 2) E. Riding in a Lift(DP)

    Imagine that you are in a building that has exactly n floors. You can move between the floors in a l ...

  5. Codeforces Round #274 (Div. 2)

    A http://codeforces.com/contest/479/problem/A 枚举情况 #include<cstdio> #include<algorithm> ...

  6. Codeforces Round #274 (Div. 1) B. Long Jumps 数学

    B. Long Jumps Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/problem/ ...

  7. Codeforces Round #274 (Div. 1) A. Exams 贪心

    A. Exams Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/problem/A Des ...

  8. codeforces水题100道 第八题 Codeforces Round #274 (Div. 2) A. Expression (math)

    题目链接:http://www.codeforces.com/problemset/problem/479/A题意:给你三个数a,b,c,使用+,*,()使得表达式的值最大.C++代码: #inclu ...

  9. Codeforces Round #274 (Div. 2)-C. Exams

    http://codeforces.com/contest/479/problem/C C. Exams time limit per test 1 second memory limit per t ...

随机推荐

  1. Django ORM常用的函数以及修饰词

    函数名称或修饰词 说明 filter() 返回符合指定条件的QuerySet exclude() 返回不符合指定条件的QuerySet ordey_by() 串接到QuerySet之后,针对某一指定的 ...

  2. asp.net 权限管理系统

    asp.net webform ,基于组织机构.角色的权限管理系统. 网上找的,挺好.随拿来分享. https://bitbucket.org/zzhi/asp.net

  3. Tomcat 7下如何利用 catalina.properties 部署公用类

    Tomcat 有很多配置文件,其中一个是  catalina.properties ,本文介绍catalina.properties 中的设置项. 一.组成   catalina.properties ...

  4. Long Parameter List(过长参数列)---要重构的味道

      一个函数,它的参数过多是不好的,不好维护和修改,易读性也差,容易出错.       消除过长参数的方法,有如下:        1.在面向对象中,你可以传递一个对象给函数,函数通过访问对象来获得参 ...

  5. 基于FPGA的HDTV视频图像灰度直方图统计算法设计

    随着HDTV的普及,以LCD-TV为主的高清数字电视逐渐进入蓬勃发展时期.与传统CRT电视不同的是,这些高清数字电视需要较复杂的视频处理电路来驱动,比如:模数转换(A/D Converter).去隔行 ...

  6. 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  7. 父元素与子元素之间的margin-top问题(css hack)

    hack: 父元素的盒子包含一个子元素盒子,给子元素盒子一个垂直外边距margin-top,父元素盒子也会往下走margin-top的值,而子元素和父元素的边距则没有发生变化. hytml代码: &l ...

  8. Intel MKL(Math Kernel Library)

    1.Intel MKL简介 Intel数学核心函数库(MKL)是一套高度优化.线程安全的数学例程.函数,面向高性能的工程.科学与财务应用.英特尔 MKL 的集群版本包括 ScaLAPACK 与分布式内 ...

  9. 初识费用流 模板(spfa+slf优化) 餐巾计划问题

    今天学习了最小费用最大流,是网络流算法之一.可以对于一个每条边有一个容量和一个费用(即每单位流的消耗)的图指定一个源点和汇点,求在从源点到汇点的流量最大的前提下的最小费用. 这里讲一种最基础也是最好掌 ...

  10. parse_str

    之前没有遇到过parse_str,其意思就是“把查询字符串解析到变量中”也就是$str会被解析为变量. <?php $data = "a=1&b=2";parse_s ...