Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 5957   Accepted: 1833

Description

Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given
integer m, find the K-th element which is relatively prime to m when
these elements are sorted in ascending order.

Input

The
input contains multiple test cases. For each test case, it contains two
integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5

题目大意就是给出n和k求出第k个与n互素的数

如果知道欧几里德算法的话就应该知道gcd(b×t+a,b)=gcd(a,b)  (t为任意整数)

则如果a与b互素,则b×t+a与b也一定互素,如果a与b不互素,则b×t+a与b也一定不互素

故与m互素的数对m取模具有周期性,则根据这个方法我们就可以很快的求出第k个与m互素的数

假设小于m的数且与m互素的数有k个,其中第i个是ai,则第m×k+i与m互素的数是k×m+ai

 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int pri[];
int gcd ( int a , int b )
{
return b == ? a : gcd ( b , a % b ) ;
}
int main()
{
freopen("in.txt","r",stdin);
int m , k ;
while ( cin >> m >> k )
{
int i , j ;
for ( i = , j = ; i <= m ; i ++ )
if ( gcd ( m , i ) == )
pri [ j ++ ] = i ; if ( k%j != )
cout <<k/j * m +pri[k%j-] << endl;
else//要特别考虑k%j=0的情况,因为数组是从0开始的,第i个对应的是pri[i-1]
cout << (k/j-)*m+pri[j-] << endl ;
}
return ;
}

poj 2773欧几里德的更多相关文章

  1. POJ 2773 Happy 2006(欧几里德算法)

    题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里 ...

  2. POJ 2773 Happy 2006 数学题

    题目地址:http://poj.org/problem?id=2773 因为k可能大于m,利用gcd(m+k,m)=gcd(k,m)=gcd(m,k)的性质,最后可以转化为计算在[1,m]范围内的个数 ...

  3. POJ 2773 Happy 2006#素数筛选+容斥原理+二分

    http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...

  4. poj 2773 Happy 2006 - 二分答案 - 容斥原理

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11161   Accepted: 3893 Description Two ...

  5. [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)

    题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...

  6. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  7. poj 2773(容斥原理)

    容斥原理入门题吧. Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9798   Accepted: 3 ...

  8. D - C Looooops POJ - 2115 欧几里德拓展

    题意:就是看看for(; ;)多久停止. 最让我蛋疼的是1L和1LL的区别!让我足足wa了12发! 1L 是long类型的, 1LL为long long类型的! 思路: 这就是欧几里德扩展的标准式子了 ...

  9. POJ 2773 Happy 2006------欧几里得 or 欧拉函数。

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8359   Accepted: 2737 Descri ...

随机推荐

  1. Item 6 消除过期的对象引用

    过期对象引用没有清理掉,会导致内存泄漏.对于没有用到的对象引用,可以置空,这是一种做法.而最好的做法是,把保存对象引用的变量清理掉,多用局部变量.   什么是内存泄漏? 在Java中,对象的内存空间回 ...

  2. bzoj 2730: [HNOI2012]矿场搭建——tarjan求点双

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  3. 【BZOJ】1709: [Usaco2007 Oct]Super Paintball超级弹珠

    [算法]模拟 [题解]O(n^2)预处理横线(y),纵线(x),主对角线(y-x+n),副对角线(x+y). 然后n^2枚举每个点.

  4. 使用abp的 redis cache

    top 使用abp的 redis cache -1. 在微软维护的github项目的release里找到redis的windows版本 64位 大约5M,安装,安装,然后在安装目录找到redis.wi ...

  5. ...args剩余参数用法

      剩余参数语法允许我们将一个不定数量的参数表示为一个数组. function sum(...theArgs) { return theArgs.reduce((previous, current) ...

  6. idea 调试远程tomcat

    # ----- Execute The Requested Command ----------------------------------------- JAVA_OPTS="-age ...

  7. mysql in/no in/like

    % 任意字符 _ 任意一个字符 in (value,......) 在这里 not in (value,......) 不在这里 mysql> select 'a' not in (1,2,3, ...

  8. MySQL 8.0 正式版 8.0.11 发布:比 MySQL 5.7 快 2 倍

    ySQL 8.0 正式版 8.0.11 已发布,官方表示 MySQL 8 要比 MySQL 5.7 快 2 倍,还带来了大量的改进和更快的性能! 注意:从 MySQL 5.7 升级到 MySQL 8. ...

  9. OpenRCT2-ext

    https://github.com/RollingStar/RCT-Music-Patch https://github.com/seanfisk/rct2-game-objects https:/ ...

  10. 2015多校第6场 HDU 5354 Bipartite Graph CDQ,并查集

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5354 题意:求删去每个点后图是否存在奇环(n,m<=1e5) 解法:很经典的套路,和这题一样:h ...