「PKUSC2018」星际穿越 (70分做法)
5371: [Pkusc2018]星际穿越
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 27 Solved: 11
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 1 2 1 4 6
5
3 4 6
1 5 7
1 2 4
1 2 6
1 3 5
Sample Output
13/5
3/2
2/1
1/1
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=5005; int mn[maxn],L[maxn],n,Q,f[maxn][maxn],d[maxn][maxn],a,b,c; int gcd(int x,int y){ return y?gcd(y,x%y):x;} inline void prework(){
mn[n+1]=n+1;
for(int i=n;i;i--) mn[i]=min(mn[i+1],L[i]); for(int i=1;i<=n;i++) f[i][2]=mn[i+1],f[i][0]=i,f[i][1]=L[i]; for(int i=2,k,j;i<=n;i++){
k=i-1; for(j=1;f[i][j]>1;j++)
for(;k>=f[i][j];k--) f[i][j+1]=min(f[i][j+1],L[k]),d[i][k]=j; for(;k;k--) d[i][k]=j;
} for(int i=2;i<=n;i++)
for(int j=1;j<i;j++) d[i][j]+=d[i][j-1];
} inline void solve(){
scanf("%d",&Q);
while(Q--){
scanf("%d%d%d",&a,&b,&c);
c=d[c][b]-d[c][a-1];
a=b-a+1,b=gcd(a,c);
a/=b,c/=b; printf("%d/%d\n",c,a);
}
} int main(){
memset(f,0x3f,sizeof(f)); scanf("%d",&n),L[1]=1;
for(int i=2;i<=n;i++) scanf("%d",L+i); prework();
solve(); return 0;
}
「PKUSC2018」星际穿越 (70分做法)的更多相关文章
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- 【LOJ】#6435. 「PKUSC2018」星际穿越
题解 想出70的大众分之后就弃疗了,正解有点神仙 就是首先有个比较显然的结论,就是要么是一直往左走,要么是走一步右边,然后一直往左走 根据这个可以结合RMQ写个70分的暴力 我们就考虑,最优的话显然是 ...
- #6435. 「PKUSC2018」星际穿越
考场上写出了70分,现在填个坑 比较好写的70分是这样的:(我考场上写的贼复杂) 设\(L(i)=\min_{j=i}^nl(j)\) 那么从i开始向左走第一步能到达的就是\([l(i),i-1]\) ...
- LOJ 6435 「PKUSC2018」星际穿越——DP+倍增 / 思路+主席树
题目:https://loj.ac/problem/6435 题解:https://www.cnblogs.com/HocRiser/p/9166459.html 自己要怎样才能想到怎么做呢…… dp ...
- 「PKUSC2018」星际穿越(倍增)
倍增好题啊! 我们我们预处理 \(f[x][i]\) 表示 \(x\) 点最左到达的端点,\(sum[x][i]\) 表示 \(x\) 点最左到达的端点时 \(f[x][i]\sim x\) 的答案, ...
- loj#6435. 「PKUSC2018」星际穿越(倍增)
题面 传送门 题解 我们先想想,在这个很特殊的图里该怎么走最短路 先设几个量,\(a_i\)表示\([a_i,i-1]\)之间的点都和\(i\)有边(即题中的\(l_i\)),\(l\)表示当前在计算 ...
- 「PKUSC2018」星际穿越
传送门 Solution 倍增 Code #include <bits/stdc++.h> #define reg register #define ll long long usin ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
随机推荐
- Android通知栏介绍与适配总结
由于历史原因,Android在发布之初对通知栏Notification的设计相当简单,而如今面对各式各样的通知栏玩法,谷歌也不得不对其进行更新迭代调整,增加新功能的同时,也在不断地改变样式,试图迎合更 ...
- 结合promise对原生fetch的两个then用法理解
前言:该问题是由于看到fetch的then方法的使用,产生的疑问,在深入了解并记录对promise的个人理解 首先看一下fetch请求使用案例: 案例效果:点击页面按钮,请求当前目录下的arr.txt ...
- Tomcat的安装以及基本配置
Tomcat是目前最常见也是最流行的基于java的一个web服务器软件 Tomcat的安装 (1)首先需要java环境,也就是说要依赖于java虚拟机JVM (2)下载Tomcat ,地址 ...
- 关于c++的string的operator =
在 c++ primer 5 中在说到string的章节里面有这样一句话: string s5 = "hiya"; // copy initialization 也就是说,这里说上 ...
- Mybatis学习 PageHelper分页插件
1.Maven依赖,注意使用PageHelper时的版本必须与Mybatis版本对应 1 <!-- 添加Mybatis依赖 --> 2 <dependency> 3 <g ...
- redis的安装和php的redis扩展
一.redis的安装和配置 1.官方现在源码 https://redis.io/download 2.解压源码 tar zxvf redis-3.2.11.tar.gz 3.编译 make 编译 ...
- 一、安装ansible
yum -y install epel-release \\安装epel源 yum -y install ansible1.9.noarch \\安装ansible自动化 ansible目录简要 ...
- [转载] Python itertools模块详解
原文在这里,写的很详细,感谢原作者,以下摘录要点. itertools用于高效循环的迭代函数集合. 无限迭代器 迭代器 参数 结果 例子 count() start, [step] start, st ...
- MyBatis 返回(批量)新增数据的自增id
<insert id="save" parameterType="Vote" useGeneratedKeys="true" keyP ...
- Maven的私有仓库Nexus
1.什么是Nexus 在前面进行maven项目的构建中,可以看到在构建的过程中需要安装maven的依赖插件,如图: 在日常的开发构建中,我们也可以自己搭建一个私有的nexus.那么什么是nexus呢? ...