1004: [HNOI2008]Cards

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

【分析】

  这一题是直接输入了m个置换的。

  把输入的置换变成互不相交的循环,根据burnside引理我们要求让所有循环节里的元素颜色相同的方案数,但是3种颜色都规定了数量的,所以用三维DP可以求出方案数,最后求均值。

  有一个不懂的地方就是,为什么不用计算那m个置换的乘积的贡献呢??【问号??

  好吧我没看题。。题目上说保证任意多次洗牌都可用这 m种洗牌法中的一种代替

  其他地方还是很好算的。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 110 int a[Maxn],f[][][];
bool vis[Maxn];
int l[Maxn];
int Sr,Sb,Sg,m,p,n; void ffind()
{
memset(f,,sizeof(f));
f[][][]=;
for(int q=;q<=l[];q++)
{
for(int i=Sr;i>=;i--)
for(int j=Sb;j>=;j--)
for(int k=Sg;k>=;k--)
{
if(i>=l[q]) f[i][j][k]=(f[i][j][k]+f[i-l[q]][j][k])%p;
if(j>=l[q]) f[i][j][k]=(f[i][j][k]+f[i][j-l[q]][k])%p;
if(k>=l[q]) f[i][j][k]=(f[i][j][k]+f[i][j][k-l[q]])%p;
}
}
} int qpow(int a,int b)
{
int ans=;
while(b)
{
if(b&) ans=(ans*a)%p;
a=(a*a)%p;
b>>=;
}
return ans;
} int main()
{
scanf("%d%d%d%d%d",&Sr,&Sb,&Sg,&m,&p);
n=Sr+Sb+Sg;
int ans=;
m++;
for(int i=;i<=m;i++)
{
if(i!=m)
{
for(int j=;j<=n;j++) scanf("%d",&a[j]);
}
else for(int j=;j<=n;j++) a[j]=j;
l[]=;
for(int j=;j<=n;j++) vis[j]=;
for(int j=;j<=n;j++) if(vis[j]==)
{
int x=j,cnt=;
while(vis[x]==)
{
vis[x]=;
cnt++;
x=a[x];
}
l[++l[]]=cnt;
}
ffind();
ans=(ans+f[Sr][Sb][Sg])%p;
}
ans=(ans*qpow(m,p-))%p;
printf("%d\n",ans);
return ;
}

2017-01-12 15:51:25

【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)的更多相关文章

  1. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  2. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  3. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  4. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  5. [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  6. BZOJ 1004 Cards(Burnside引理+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...

  7. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

  8. BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)

    题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...

  9. 【BZOJ 1004】 [HNOI2008]Cards

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 [题意] 给你sr+sb+sg张牌,(令n=sr+sb+sg),让你把这n张牌染 ...

  10. BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】

    题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...

随机推荐

  1. Oracle 导出空表的新方法(彻底解决)

    背景 使用Exp命令在oracle 11g 以后不导出空表(rowcount=0),是最近在工作中遇到一个很坑的问题,甚至已经被坑了不止一次,所以这次痛定思痛,准备把这个问题彻底解决.之所以叫新方法, ...

  2. 【BZOJ】3971 [WF2013]Матрёшка

    [算法]区间DP [题解] 参考写法:BZOJ 3971 Матрёшка 解题报告 第二个DP可以预处理mex优化到O(nM+n2),不过我懒…… 第一个DP有另一种写法:不预处理,在一个n2取出来 ...

  3. 【洛谷 P1419】 寻找段落(二分答案,单调队列)

    题目链接 开始还以为是尺取.发现行不通. 一看标签二分答案,恍然大悟. 二分一个\(mid\)(实数),把数列里每个数减去\(mid\),然后求前缀和,在用单调队列维护\(sum[i-t\text{~ ...

  4. HDU 1234 开门人和关门人 (模拟)

    题目链接 Problem Description 每天第一个到机房的人要把门打开,最后一个离开的人要把门关好.现有一堆杂乱的机房签  到.签离记录,请根据记录找出当天开门和关门的人.    Input ...

  5. new操作符(翻译自mozilla.org)

    翻译自:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new new操作符可以实例化一个用户自 ...

  6. C++之编译器与链接器工作原理

    原文来自:http://blog.sina.com.cn/s/blog_5f8817250100i3oz.html 这里并没不是讨论大学课程中所学的<编译原理>,只是写一些我自己对C++编 ...

  7. Laravel 5.2 数据库迁移和数据填充

    一.数据库迁移 Laravel 的数据库迁移提供了对数据库.表.字段.索引的一系列相关操作.下面以创建友情链接表为例. 1. 创建迁移 使用 Artisan 命令  php artisan make: ...

  8. redis可编译

    redis-3.0.7 可编译 redis-3.0.7.tar.gz twemproxy-master.zip keepalived-1.2.19.tar.gz openssl-1.0.1s.tar. ...

  9. [转载]Python: 你不知道的 super

    原文出处: geekvi super() 的入门使用 在类的继承中,如果重定义某个方法,该方法会覆盖父类的同名方法,但有时,我们希望能同时实现父类的功能,这时,我们就需要调用父类的方法了,可通过使用  ...

  10. Javascript正则表达式详细讲解和示例,通俗易懂

    正则表达式可以: •测试字符串的某个模式.例如,可以对一个输入字符串进行测试,看在该字符串是否存在一个电话号码模式或一个信用卡号码模式.这称为数据有效性验证 •替换文本.可以在文档中使用一个正则表达式 ...