【题意】

装配一个电脑需要P个零件,现在给出N机器的信息,每个机器可以将k个电脑由状态{S1,S2..,Sp}转变为{Q1,Q2..,Qp},问最多能装配多少台电脑以及对应的方案?

【思路】

1A..拆点,将每个机器状态S到状态Q的容量设为k,其余的设为INF。设置{0,0,0}(或含有2)和源点连接,{1,1,1}(或含有2)和汇点连接。用Dinic跑一次最大流,反向边最后的容量就是方案。

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<vector>
#include<cmath>
#include<queue>
using namespace std;
struct node
{
int to,pos,cap;
};
const int MAXN=;
const int MAXP=;
const int MAXM=;
const int INF=0x7fffffff;
int n,p;
int s[MAXN][MAXP],q[MAXN][MAXP],value[MAXN];
int vis[MAXM];
vector<node> E[MAXM*MAXM];
int dis[MAXM];
int flow; void addedge(int u,int v,int w)
{
/*
POJ必须写成如下形式才能A,否则会CE
node tmp;
tmp.to=v;
tmp.pos=E[v].size();
tmp.cap=w;
E[u].push_back(tmp);
tmp.to=u;
tmp.pos=E[u].size()-1;
tmp.cap=0;
E[v].push_back(tmp);
*/
E[u].push_back((node){v,E[v].size(),w});
E[v].push_back((node){u,E[u].size()-,});
} void init()
{
scanf("%d%d",&p,&n) ;
for (int i=; i<n; i++)
{
scanf("%d",&value[i]);
for (int j=; j<p; j++)
scanf("%d",&s[i][j]);
for (int j=; j<p; j++)
scanf("%d",&q[i][j]);
}
} void buildup()
{
/*拆点*/
for (int i=; i<n; i++)
addedge(i*+,i*+,value[i]); /*如果流入全为0或2,则与源点相连*/
for (int i=; i<n; i++)
{
int flag=;
for (int j=; j<p; j++) if (s[i][j]==)
{
flag=;
break;
}
if (flag) addedge(,i*+,INF);
} /*如果流出全为1或2,则与汇点相连*/
for (int i=; i<n; i++)
{
int flag=;
for (int j=; j<p; j++) if (q[i][j]==)
{
flag=;
break;
}
if (flag) addedge(i*+,n*+,INF);
} /*连边*/
for (int i=; i<n; i++)
for (int j=; j<n; j++)
{
int flag=;
for (int k=; k<p; k++)
if ((q[i][k]== && s[j][k]==) || (q[i][k]== && s[j][k]==))
{
flag=;
break;
}
if (flag) addedge(i*+,j*+,INF);
}
} int bfs()
{
memset(dis,-,sizeof(dis));
queue<int> que;
que.push();
dis[]=; while (!que.empty())
{
int head=que.front();
que.pop();
for (int i=; i<E[head].size(); i++)
{
node tmp=E[head][i];
if (dis[tmp.to]!=- || tmp.cap<=) continue;
dis[tmp.to]=dis[head]+;
que.push(tmp.to);
}
}
if (dis[*n+]==-) return ;
else return ;
}
int dfs(int s,int t,int f)
{
int ret=;
if (s==t) return f;
vis[s]=;//不要忘记这里要设置为访问过
for (int i=;i<E[s].size();i++)
{
node &tmp=E[s][i];
if (vis[tmp.to]== && tmp.cap>)
{
int delta=dfs(tmp.to,t,min(tmp.cap,f));
if (delta>)
{
ret+=delta;
tmp.cap-=delta;
E[tmp.to][tmp.pos].cap+=delta;
f-=delta;
}
}
}
return ret;
} void Dinic()
{
flow=;
while (bfs())
{
for (;;)
{
memset(vis,,sizeof(vis));
int f=dfs(,*n+,INF);
if (f==) break;
else flow+=f;
}
}
} void output()
{
cout<<flow<<' ';
int M=,l[MAXN],r[MAXN],c[MAXN];
for (int i=; i<*n+; i++)
for (int j=; j<E[i].size(); j++)
{
node tmp=E[i][j];
if (E[tmp.to][tmp.pos].cap> && E[tmp.to][tmp.pos].cap<=flow && tmp.to!=*n+ && ((tmp.to+)>>!=(i+)>>))
{
M++;
l[M]=(i+)>>;
r[M]=(tmp.to+)>>;
c[M]=E[tmp.to][tmp.pos].cap;
}
}
cout<<M<<endl;
for (int i=; i<=M; i++) cout<<l[i]<<' '<<r[i]<<' '<<c[i]<<endl;
} int main()
{
init();
buildup();
Dinic();
output();
return ;
}

【最大流】POJ3236-ACM Computer Factory的更多相关文章

  1. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  2. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  3. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  4. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  5. POJ3436:ACM Computer Factory(最大流)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9963   Accepted: 3 ...

  6. ACM Computer Factory - poj 3436 (最大流)

      Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5949   Accepted: 2053   Special Judge ...

  7. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  8. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  9. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  10. POJ 3464 ACM Computer Factory

    ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4829 Accepted: 1641 ...

随机推荐

  1. LeetCode 19 Valid Parentheses

    Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...

  2. 内存分配器memblock【转】

    转自:http://blog.csdn.net/kickxxx/article/details/54710243 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 背景 Data ...

  3. 获取并编译最新的Notepad++源码

    获取并编译最新的Notepad++源码 http://blog.csdn.net/u012814856/article/details/68947310 Notepad++源码编译及其分析 http: ...

  4. twemproxy 简介、安装配置

    twemproxy 简介.安装配置 http://www.xuchanggang.cn/archives/993.html

  5. c++ ui 库

    Dulib 比较流行的direct ui 界面框架 UIStone 据说金山词霸用着,查询资料甚少 DirectUI qq使用了据说,多学习学习吧 基于directUI的dulib不错 c盘没空间,运 ...

  6. NOIP 2012 Day1

    tags: NOIP 模拟 倍增 高精 Python categories: 信息学竞赛 总结 Luogu P1079 Vigenère 密码 Solution 表示并不是很懂其他人发的题解. 我是这 ...

  7. 前后端分离,Vue+restfullframework

    一.准备 修改源: npm config set registry https://registry.npm.taobao.org 创建脚手架: vue init webpack Vue项目名称 #I ...

  8. 安卓屏幕旋转时,禁止Activity重新加载

    安卓设备旋转屏幕时,Activity默认会重新加载,如果是要读取大量数据的场景,那等待的时间比较长,这一点不可接受,所以要想办法禁止Activity自动重新加载. 方法如下在AndroidManife ...

  9. 如何在SQL Server中的SELECT TOP 中使用变量

    语法   [ TOP (expression) [PERCENT] [ WITH TIES ] ] 注意:expression 是在一对圆括号内的,而之后又有如下的例子 在 TOP 中使用变量 以下示 ...

  10. JavaScript将最终获得正确的异步编程

    JavaScript将最终获得正确的异步编程 包括该提案异步 在ECMAScript中的功能已经达到第四阶段; 这意味着它将在2017年发布的标准.但是这对JavaScript开发者意味着什么? 有很 ...