洛谷题目链接:多人背包

题目描述

求01背包前k优解的价值和

输入输出格式

输入格式:

第一行三个数K、V、N

接下来每行两个数,表示体积和价值

输出格式:

前k优解的价值和

输入输出样例

输入样例#1:

2 10 5

3 12

7 20

2 4

5 6

1 1

输出样例#1:

57

说明

对于100%的数据, \(K\le 50,V\le 5000,N\le 200\)


题意已经很清楚了,就不多赘述了.


题解:

首先考虑一下如何做01背包.显然有$$f[j]=max(f[j], f[j-cost[i]]+value[i])$$.那么我们应该如何记录这个前\(k\)优的解呢?

首先是应该想到将前\(k\)优的解加入状态的转移中.先定义状态\(f[j][k]\)表示\(j\)的容量的第\(k\)优解的值.考虑一下转移的情况,显然\(f[j][k]\)的情况只能由\(f[j][k]\)和\(f[j-cost[i]][1...k]\)转移而来(其实这个\(1...k\)是一个确定的值,因为\(k\)越大,\(f[j-cost[i]][1...k]\)越小,也就是说这个是单调的.肯定只有一个值能转移到\(f[j][k]\)的状态).

那么既然这个是单调的,并且又只有两种决策,那么其实这里是可以用归并来求解最大值的.在枚举的时候,可以用两个指针记录已经转移到第几个状态.每次选择大的那一个,最后归并回原数组(这里我是一边枚举一边归并的).

#include<bits/stdc++.h>
using namespace std;
const int V=5000+5;
const int N=200+5;
const int K=50+5; int n, v, k, c[N], w[N], q[K], ans = 0;
int f[V][K]; int main(){
cin >> k >> v >> n;
memset(f, 128, sizeof(f)); f[0][1] = 0;
for(int i=1;i<=n;i++) cin >> c[i] >> w[i];
for(int i=1;i<=n;i++)
for(int j=v;j>=c[i];j--){
int now = 1, last = 1, cnt = 0;
while(cnt < k){
if(f[j][now] > f[j-c[i]][last]+w[i])
q[++cnt] = f[j][now++];
else q[++cnt] = f[j-c[i]][last++]+w[i];
}
for(int o=1;o<=k;o++) f[j][o] = q[o];
}
for(int i=1;i<=k;i++) ans += f[v][i];
printf("%d\n",ans);
return 0;
}

[洛谷P1858] 多人背包的更多相关文章

  1. 洛谷 P1858 多人背包 DP

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 洛谷 P1858 多人背包 题目描述 求01背包前k优解的价值 ...

  2. 洛谷 P1858 多人背包 解题报告

    P1858 多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数\(K\).\(V\).\(N\) 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 说 ...

  3. 洛谷 P1858 多人背包

    求01背包前k优解的价值和 输入输出格式 Input/output 输入格式:第一行三个数K.V.N(k<=50,v<=5000,n<=200)接下来每行两个数,表示体积和价值输出格 ...

  4. 洛谷P1858 多人背包 多人背包板子题/多人背包学习笔记

    ,,,本来自以为,我dp学得还挺好的 然后今天一考发现都不会啊QAQ 连最基础的知识点都不清楚啊QAQ 所以就来写个题解嘛! 先放下板子题 其实我jio得,这题只要大概了解方法就不是很难鸭,,,毕竟是 ...

  5. 解题:洛谷 p1858 多人背包

    题面 设$dp[i][j]$表示容量为$i$时的第$j$优解,因为是优解,肯定$dp[i][j]$是随着$j$增大不断递减的,这样的话对于一个新加进来的物品,它只可能从两个容量的转移的前$k$优解中转 ...

  6. P1858 多人背包

    P1858 多人背包 题目描述 求01背包前k优解的价值和 要求装满 调试日志: 初始化没有赋给 dp[0] Solution 首先补充个知识点啊, 要求装满的背包需要初始赋 \(-inf\), 边界 ...

  7. 【洛谷P1858】多人背包

    题目大意:求解 0-1 背包前 K 优解的和. 题解:首先,可知对于状态 \(dp[j]\) 来说,能够转移到该状态的只有 \(dp[j],dp[j-w[i]]\).对于 K 优解来说,只需对状态额外 ...

  8. 洛谷P4495 奇怪的背包 [HAOI2018] 数论

    正解:数论+dp 解题报告: 传送门! 首先看到这题,跳无数次,自然而然可以想到之前考过好几次了的一个结论——如果只考虑无限放置i,它可以且仅可以跳到gcd(p,v[i]) 举一反三一下,如果有多个i ...

  9. 洛谷P4138 挂饰 背包

    正解:背包dp 解题报告: 昂先放链接qwq 感觉还挺妙的,,,真的我觉得我直接做可能是想不到背包的,,,我大概想不出是个背包的QAQ 但是知道是背包之后觉得,哦,好像长得也确实挺背包的吼,而且其实是 ...

随机推荐

  1. allocator类

    一.动态数组 [new的局限性] new将内存分配和对象构造组合在一起,同样delete将对象析构和内存释放组合在一起 我们分配单个对象时,通常希望将内存分配和对象初始化组合在一起(我们知道对象应有什 ...

  2. Thunder团队Beta周贡献分规则

    小组名称:Thunder 项目名称:i阅app 组长:王航 成员:李传康.翟宇豪.邹双黛.苗威.宋雨.胡佑蓉.杨梓瑞 分配规则 规则1:基础分,拿出总分的20%(8分)进行均分,剩下的80%(32分) ...

  3. Thunder团队第五周 - Scrum会议2

    Scrum会议2 小组名称:Thunder 项目名称:i阅app Scrum Master:胡佑蓉 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...

  4. c++ string需要注意的地方

    There are multiple answers based on what you are doing with the string. 1) Using the string as an id ...

  5. Java package和import语句

    Java中的package和import语句 如果你想让其他人访问你的类,你一定要把你写的类放到正确的子目录下. 在Java里,对于位于包中的类是这样管理的: Java编译器把包对应于文件系统的目录管 ...

  6. P4编程环境搭建

    本文参照了sdnlab上相关文章的搭建推荐. 使用的系统环境为ubuntu 18.04 组件介绍 主要安装五个组件: BMv2:是一款支持P4编程的软件交换机 p4c:是一款P4的编译器 PI:是P4 ...

  7. 一个例子说明mouseover事件与mouseenter事件的区别

    <html> <head> <meta charset="UTF-8"> <title>haha</title> < ...

  8. 关于如何解决PHPCMS V9内容搜索显示不全问题解决方案

    站长朋友们都晓得只要是开源的PHP程序都会有漏洞存在.如果想完美的建站就需要自己去研究打补丁了.最近很多站长联系小编咨询用phpcms建站当在首页搜索内容的时候有的居然搜索不到.小编感到很是奇怪于是就 ...

  9. C#中的unsafe

    为了保持类型安全性,默认情况下,C# 不支持指针算法. 但是,通过使用 unsafe 关键字,可以定义可在其中使用指针的不安全上下文. 有关指针的详细信息,请参阅主题指针类型. 备注 在公共语言运行时 ...

  10. 【codevs3160】最长公共子串 后缀数组

    题目描述 给出两个由小写字母组成的字符串,求它们的最长公共子串的长度. 输入 读入两个字符串 输出 输出最长公共子串的长度 样例输入 yeshowmuchiloveyoumydearmotherrea ...