今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验 ( Kruskal-Wallis检验)。

还是以SPSS教程为例:

假设:HO:   不同地区的儿童,身高分布是相同的

H1: 不同地区的儿童,身高分布是不同的

不同地区儿童身高样本数据如下所示:

提示:此样本数为4个(北京,上海,成都 ,广州)每个样本的样本量(观察数)都为5个

即:K=4>3   n=5,  此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验)

点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:

将“周岁儿童身高”变量拖入右侧“检验变量列表”内, 将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。

在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定

运行结果如下所示:

对结果进行分析如下:

1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900

自由度为:3=k-1=4-1

下面来看看“秩和统计量”的计算过程,如下所示:

假设“秩和统计量”为 kw    那么:

其中:n+1/2   为全体样本的“秩平均”     Ri./ni   为第i个样本的秩平均    Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)

最后得到的公式为:

北京地区的“秩和”为:   秩平均*观察数(N) = 14.4*5=72

上海地区的“秩和”为:8.2*5=41

成都地区的“秩和”为:15.8*5=79

广州地区的“秩和”为:3.6*5=18

接近13.90  (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)

2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003, 由于0.003<0.01  所以得出结论:

H1: 不同地区的儿童,身高分布是不同的

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析的更多相关文章

  1. SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验 案例解析

    三人行,必有我师,是不是真有我师?三种不同类型的营销手段,最终的营销效果是否一样,随即区组秩和检验带你进入分析世界 今天跟大家讨论和分享一下:spss-Friedman 秩和检验-非参数检验-K个(多 ...

  2. SPSS-非参数检验—两独立样本检验 案例解析

    今天跟大家研究和分享一下:spss非参数检验——两独立样本检验, 我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同 下面进行假设:1:一种产品两种不同的工艺 ...

  3. SPS读书笔记1——均值比较(T检验,方差检验,非参数检验汇总)

    均值比较.单样本T检验(One-sample Test))目的:检验单个变量的均值与给定的某个常数是否一致.)判断标准:p<0.05;t>1.98即认为是有显著差异的..独立样本T检验(I ...

  4. T检验与F检验的区别_f检验和t检验的关系

    1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一 ...

  5. 通俗理解T检验与F检验的区别【转】

    转自:http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错 ...

  6. 统计学常用概念:T检验、F检验、卡方检验、P值、自由度

    1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一 ...

  7. spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解

    spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解 1.Discriminant Analysis判别分析主对话框 如图 1-1 所示 图 1-1 Discriminant ...

  8. 假设检验的python实现命令——Z检验、t检验、F检验

    Z检验 statsmodels.stats.weightstats.ztest() import statsmodels.stats.weightstats as sw 参数详解: x1:待检验数据集 ...

  9. u检验、t检验、F检验、X2检验 (转)

    http://blog.renren.com/share/223170925/14708690013 常用显著性检验 1.t检验 适用于计量资料.正态分布.方差具有齐性的两组间小样本比较.包括配对资料 ...

随机推荐

  1. c++ static成员

    static 成员通常不能在类的定义体重初始化 有一种例外,const static成员可以在定义体内初始化,并且可以用于构造函数 将函数声明为const表示该函数不能修改其所属的对象

  2. Game2048

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  3. python使用外部PY文件的变量

    在用python和selenium编写登录等脚本时,一直都是给用户名和密码直接赋值.但是考虑到这样不便于管理,而且可能多个地方用到同一个变量,所以想把变量放在一个单独的文件中进行管理. 以登录脚本为例 ...

  4. java rsa 加解密

    参考 http://blog.csdn.net/a394268045/article/details/52232120 package rsa; import org.apache.commons.c ...

  5. Windows2008 IIS + .NET环境搭建指南

    Windows下最常用的网页服务器是自带的IIS,这里将为大家演示,windows2008下如何搭建IIS + .NET的动态网页环境. 环境配置:Qcloud 云服务器 windows 200864 ...

  6. java并发:AtomicInteger 以及CAS无锁算法【转载】

    1 AtomicInteger解析 众所周知,在多线程并发的情况下,对于成员变量,可能是线程不安全的: 一个很简单的例子,假设我存在两个线程,让一个整数自增1000次,那么最终的值应该是1000:但是 ...

  7. 用Git发布版本笔记

    1.首先,如果是发布的Develop分支,先从master建立HotFix分支,提交到git并指定关联关系 (git branch --set-upstream-to=D..) 2.对H分支进行功能完 ...

  8. KMS激活win10专业版失败

    关闭防火墙.杀毒软件之类,激活就成功了. 有个小发现,选择更改产品密钥,输入W269N-WFGWX-YVC9B-4J6C9-T83GX,同时用KMS激活,可能成功率比较高!(专业版的,来自http:/ ...

  9. Windows phone Toast消息推送 学习笔记

    简单介绍: Windows phone平台支持三种形式的推送通知: 1.Tile——也就是在Start屏幕程序平铺图标 2.Toast——创建一个显示在当前屏幕中的Toast弹出窗口 3.Raw——有 ...

  10. 神龟快跑,2016做的一款UWP游戏

    神龟快跑,2016做的一款UWP游戏, 实际是H5页面, 用LAYA转AS3得到的 安装地址 https://www.microsoft.com/zh-cn/store/p/神龟快跑/9nblggh4 ...