spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析
今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验 ( Kruskal-Wallis检验)。
还是以SPSS教程为例:
假设:HO: 不同地区的儿童,身高分布是相同的
H1: 不同地区的儿童,身高分布是不同的
不同地区儿童身高样本数据如下所示:

提示:此样本数为4个(北京,上海,成都 ,广州)每个样本的样本量(观察数)都为5个
即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验)
点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:

将“周岁儿童身高”变量拖入右侧“检验变量列表”内, 将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。
在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定
运行结果如下所示:

对结果进行分析如下:
1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900
自由度为:3=k-1=4-1
下面来看看“秩和统计量”的计算过程,如下所示:
假设“秩和统计量”为 kw 那么:


其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)

最后得到的公式为:

北京地区的“秩和”为: 秩平均*观察数(N) = 14.4*5=72
上海地区的“秩和”为:8.2*5=41
成都地区的“秩和”为:15.8*5=79
广州地区的“秩和”为:3.6*5=18

接近13.90 (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)
2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003, 由于0.003<0.01 所以得出结论:
H1: 不同地区的儿童,身高分布是不同的
spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析的更多相关文章
- SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验 案例解析
三人行,必有我师,是不是真有我师?三种不同类型的营销手段,最终的营销效果是否一样,随即区组秩和检验带你进入分析世界 今天跟大家讨论和分享一下:spss-Friedman 秩和检验-非参数检验-K个(多 ...
- SPSS-非参数检验—两独立样本检验 案例解析
今天跟大家研究和分享一下:spss非参数检验——两独立样本检验, 我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同 下面进行假设:1:一种产品两种不同的工艺 ...
- SPS读书笔记1——均值比较(T检验,方差检验,非参数检验汇总)
均值比较.单样本T检验(One-sample Test))目的:检验单个变量的均值与给定的某个常数是否一致.)判断标准:p<0.05;t>1.98即认为是有显著差异的..独立样本T检验(I ...
- T检验与F检验的区别_f检验和t检验的关系
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一 ...
- 通俗理解T检验与F检验的区别【转】
转自:http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错 ...
- 统计学常用概念:T检验、F检验、卡方检验、P值、自由度
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一 ...
- spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解
spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解 1.Discriminant Analysis判别分析主对话框 如图 1-1 所示 图 1-1 Discriminant ...
- 假设检验的python实现命令——Z检验、t检验、F检验
Z检验 statsmodels.stats.weightstats.ztest() import statsmodels.stats.weightstats as sw 参数详解: x1:待检验数据集 ...
- u检验、t检验、F检验、X2检验 (转)
http://blog.renren.com/share/223170925/14708690013 常用显著性检验 1.t检验 适用于计量资料.正态分布.方差具有齐性的两组间小样本比较.包括配对资料 ...
随机推荐
- 递归实现tree JQuery
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- sts,eclipse里面配置tomcat
第一步:点击window-->preferences-->server-->Runtime Environments点击add. 第二步:选择本机上面有的tomcat版本点击next ...
- mongodb基础学习1-基本说明及安装
以前看过一些mongodb的视频,但只看到一半没有看完,也没有同步安装软件动手操作,正好最近没事,打算花点时间从头学习一遍,边学习边动手操作,学习的过程在此进行记录. 好了,下面说一下今天的学习内容. ...
- sql查询分析器中显示行号
-- 工具-> -- 选项-> -- 文本编辑器-> -- 所有语言-> -- 常规-> -- 显示-> -- 行号
- TEXT 4 A question of standards
TEXT 4 A question of standards 一个关乎标准的问题 Feb 9th 2006 From The Economist Global Agenda More suggesti ...
- ArcGIS模型构建器案例学习笔记-字段处理模型集
ArcGIS模型构建器案例学习笔记-字段处理模型集 联系方式:谢老师,135-4855-4328,xiexiaokui@qq.com 由四个子模型组成 子模型1:判断字段是否存在 方法:python工 ...
- 前端编程工具WebStorm 10 工具的快捷使用方式
1.如果是一个空白的文档,要想快速生成HTML的基本结构,可以写一个! 然后按一下tab键,如果是写的一个标签的名字,则会生成基本的标签结构. 2.h1{}:{}中写要显示的文本 3.h1[]:[]中 ...
- RNN LSTM 介绍
[RNN以及LSTM的介绍和公式梳理]http://blog.csdn.net/Dark_Scope/article/details/47056361 [知乎 对比 rnn lstm 简单代码] ...
- 【Java】JVM(二)、Java垃圾收集算法
一.标记-清除算法 算法主要分为两个步骤 1. 标记: 遍历所有的 GC Roots, 然后标记所有可达对象为存活对象 2. 清除: 遍历堆中所有对象,然后将没有标记的对象清除. 存在不足: 1. 效 ...
- SQLserver和oracle中对应的数据类型