今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验 ( Kruskal-Wallis检验)。

还是以SPSS教程为例:

假设:HO:   不同地区的儿童,身高分布是相同的

H1: 不同地区的儿童,身高分布是不同的

不同地区儿童身高样本数据如下所示:

提示:此样本数为4个(北京,上海,成都 ,广州)每个样本的样本量(观察数)都为5个

即:K=4>3   n=5,  此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验)

点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:

将“周岁儿童身高”变量拖入右侧“检验变量列表”内, 将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。

在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定

运行结果如下所示:

对结果进行分析如下:

1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900

自由度为:3=k-1=4-1

下面来看看“秩和统计量”的计算过程,如下所示:

假设“秩和统计量”为 kw    那么:

其中:n+1/2   为全体样本的“秩平均”     Ri./ni   为第i个样本的秩平均    Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)

最后得到的公式为:

北京地区的“秩和”为:   秩平均*观察数(N) = 14.4*5=72

上海地区的“秩和”为:8.2*5=41

成都地区的“秩和”为:15.8*5=79

广州地区的“秩和”为:3.6*5=18

接近13.90  (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)

2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003, 由于0.003<0.01  所以得出结论:

H1: 不同地区的儿童,身高分布是不同的

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析的更多相关文章

  1. SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验 案例解析

    三人行,必有我师,是不是真有我师?三种不同类型的营销手段,最终的营销效果是否一样,随即区组秩和检验带你进入分析世界 今天跟大家讨论和分享一下:spss-Friedman 秩和检验-非参数检验-K个(多 ...

  2. SPSS-非参数检验—两独立样本检验 案例解析

    今天跟大家研究和分享一下:spss非参数检验——两独立样本检验, 我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同 下面进行假设:1:一种产品两种不同的工艺 ...

  3. SPS读书笔记1——均值比较(T检验,方差检验,非参数检验汇总)

    均值比较.单样本T检验(One-sample Test))目的:检验单个变量的均值与给定的某个常数是否一致.)判断标准:p<0.05;t>1.98即认为是有显著差异的..独立样本T检验(I ...

  4. T检验与F检验的区别_f检验和t检验的关系

    1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一 ...

  5. 通俗理解T检验与F检验的区别【转】

    转自:http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错 ...

  6. 统计学常用概念:T检验、F检验、卡方检验、P值、自由度

    1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一 ...

  7. spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解

    spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解 1.Discriminant Analysis判别分析主对话框 如图 1-1 所示 图 1-1 Discriminant ...

  8. 假设检验的python实现命令——Z检验、t检验、F检验

    Z检验 statsmodels.stats.weightstats.ztest() import statsmodels.stats.weightstats as sw 参数详解: x1:待检验数据集 ...

  9. u检验、t检验、F检验、X2检验 (转)

    http://blog.renren.com/share/223170925/14708690013 常用显著性检验 1.t检验 适用于计量资料.正态分布.方差具有齐性的两组间小样本比较.包括配对资料 ...

随机推荐

  1. MFC 线程中CWnd对象

    尽量不要在MFC线程中将CWnd作为参数传递,会引起crash 正确的做法: 1. 将CWnd对应的handle传进来,通过CWnd::FromHandle()函数转换: 2. 在线程中用SendMe ...

  2. cobbler全自动批量安装部署linux

    Cobbler的设计方式: Cobbler的配置结构基于一组注册的对象.每个对象表示一个与另一个实体相关联的实体(该对象指向另一个对象,或者另一个对象指向该对象).当一个对象指向另一个对象时,它就继承 ...

  3. Graylog安装配置

    ES集群健康检测:curl -sXGET http://localhost:9200/_cluster/health?pretty=true | grep "status" | a ...

  4. memcache命令

    Command Description Example get 读取键值 get mykey set 设置新键值 set mykey 0 60 5 add 新增键值 add newkey 0 60 5 ...

  5. EditorGUILayout,GUILayout

    bool active=EditorGUILayout.Toggle("active",_bodyObj.active);//bool类型 b2BodyType type=(b2B ...

  6. Haskell语言学习笔记(60)Biapplicative

    Biapplicative class Bifunctor p => Biapplicative p where bipure :: a -> b -> p a b (<< ...

  7. js实现jquery函数animate动画效果

    <script> function animate(obj, json, interval, sp, fn) { clearInterval(obj.timer); function ge ...

  8. Ansiable Manage MySQL global variables

    mysql_variables - Manage MySQL global variables New in version 1.3. Synopsis Requirements (on host t ...

  9. 登录时显示403 Access Denied

    用户名及密码设置如下: 在tomcat安装目录\conf\tomcat-users.xml中的<tomcat-users>标签内设置: <role rolename="ma ...

  10. LuoguP1226 【模板】快速幂||取余运算

    题目链接:https://www.luogu.org/problemnew/show/P1226 第一次学快速幂,将别人对快速幂原理的解释简要概括一下: 计算a^b时,直接乘的话计算次数为b,而快速幂 ...