Feel Good
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 18449   Accepted: 5125
Case Time Limit: 1000MS   Special Judge

Description

Bill is developing a new mathematical theory for human emotions. His recent investigations are dedicated to studying how good or bad days influent people's memories about some period of life.

A new idea Bill has recently developed assigns a non-negative integer value to each day of human life.

Bill calls this value the emotional value of the day. The greater the emotional value is, the better the daywas. Bill suggests that the value of some period of human life is proportional to the sum of the emotional values of the days in the given period, multiplied by the smallest emotional value of the day in it. This schema reflects that good on average period can be greatly spoiled by one very bad day.

Now Bill is planning to investigate his own life and find the period of his life that had the greatest value. Help him to do so.

Input

The first line of the input contains n - the number of days of Bill's life he is planning to investigate(1 <= n <= 100 000). The rest of the file contains n integer numbers a1, a2, ... an ranging from 0 to 106 - the emotional values of the days. Numbers are separated by spaces and/or line breaks.

Output

Print the greatest value of some period of Bill's life in the first line. And on the second line print two numbers l and r such that the period from l-th to r-th day of Bill's life(inclusive) has the greatest possible value. If there are multiple periods with the greatest possible value,then print any one of them.

Sample Input

6
3 1 6 4 5 2

Sample Output

60
3 5

Source


Solution

题意:找一个区间,使这个区间最小值乘上这个区间的和最大。

用单调栈维护递增,找出以每个$i$为最小值的最远的左右端点即可。

每次弹栈就更新被弹元素的右端点,入栈时更新入栈元素的左端点即可。

(为什么不把题说清楚有多组数据还有spj太垃圾了吧必须要区间最小!!!!)

(真的受不了了为什么poj那么卡aaaaa!!!浪费了我好多好多时间!!!!!!!!【粉转黑!!)

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std; LL a[], pre[];
int stk[], R[], L[], n;
int main() {
while(~scanf("%d", &n)) {
int top = ;
memset(pre, , sizeof(pre));
memset(L, , sizeof(L));
memset(R, , sizeof(R));
for(int i = ; i <= n; i ++) {
scanf("%I64d", &a[i]);
pre[i] = pre[i - ] + a[i];
while(a[i] < a[stk[top]] && top) {
R[stk[top --]] = i - ;
}
L[i] = stk[top] + ;
stk[++ top] = i;
}
while(top) {
R[stk[top --]] = n;
}
LL ans = ; int l, r;
for(int i = ; i <= n; i ++) {
LL tmp = (pre[R[i]] - pre[L[i] - ]) * a[i];
if(tmp > ans) {
ans = tmp;
l = L[i], r = R[i];
}
if(tmp == ans) {
if(R[i] - L[i] + < r - l + ) {
l = L[i], r = R[i];
}
}
}
printf("%I64d\n%d %d\n", ans, l, r);
} return ;
}

【POJ】2796:Feel Good【单调栈】的更多相关文章

  1. poj 2796 Feel Good单调栈

    Feel Good Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20408   Accepted: 5632 Case T ...

  2. poj 2796 Feel Good 单调栈区间问题

    Feel Good 题意:给你一个非负整数数组,定义某个区间的参考值为:区间所有元素的和*区间最小元素.求该数组中的最大参考值以及对应的区间. 比如说有6个数3 1 6 4 5 2 最大参考值为6,4 ...

  3. POJ 3658 Artificial Lake (单调栈)

    题意: 析:利用单调栈,维护一个单调递增的栈,首先在最低的平台开始,每次向两边进行扩展,寻找两边最低的,然后不断更新宽度. 代码如下: #pragma comment(linker, "/S ...

  4. poj 2559 Largest Rectangle(单调栈)

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26549 ...

  5. POJ - 2796 Feel Good 单调递增栈+前缀和

    Feel Good Bill is developing a new mathematical theory for human emotions. His recent investigations ...

  6. POJ 3415 后缀数组+单调栈

    题目大意: 给定A,B两种字符串,问他们当中的长度大于k的公共子串的个数有多少个 这道题目本身理解不难,将两个字符串合并后求出它的后缀数组 然后利用后缀数组求解答案 这里一开始看题解说要用栈的思想,觉 ...

  7. poj 2796 Feel Good 单调队列

    Feel Good Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8753   Accepted: 2367 Case Ti ...

  8. [poj 2796]单调栈

    题目链接:http://poj.org/problem?id=2796 单调栈可以O(n)得到以每个位置为最小值,向左右最多扩展到哪里. #include<cstdio> #include ...

  9. POJ 2796:Feel Good(单调栈)

    http://poj.org/problem?id=2796 题意:给出n个数,问一个区间里面最小的元素*这个区间元素的和的最大值是多少. 思路:只想到了O(n^2)的做法. 参考了http://ww ...

  10. POJ 2796 Feel Good 【单调栈】

    传送门:http://poj.org/problem?id=2796 题意:给你一串数字,需要你求出(某个子区间乘以这段区间中的最小值)所得到的最大值 例子: 6 3 1 6 4 5 2 当L=3,R ...

随机推荐

  1. SolrJ案例实现搭建环境——(十五)

    案例

  2. oracle环境变量详解

    共享存储文件系统(NFS) 通常情况下,ORACLE_SID这个环境变量全称Oracle System Identifier,,用于在一台服务器上标识不同的实例,默认情况下,实例名就是ORACLE_S ...

  3. 当遇到not a dynamic executable时怎么做

    当我使用ldd查找Drcom所缺少的32为库的时候提示not a dynamic executable 最后网上找到答案 来自http://forum.ubuntu.org.cn/viewtopic. ...

  4. 关于new Handler()与new Handler(Looper.getMainLooper())区别

    如果你不带参数的实例化:Handler handler=new Handler();那么这个会默认用当前线程的Looper对象. 一般而言,如果你的Handler是要用来刷新UI的,那么就需要在主线程 ...

  5. 聊天室(上篇)GatewayWorker 基础

    前言 本文的目的是基于 GatewayWorker 官方手册,梳理一次 GatewayWorker,并在实践中与 MVC 框架整合的思路(附最终的项目源码).如果你已经理解了整合这一块儿的知识,那么就 ...

  6. MVVM模式View和ViewModel的通信

    还需要些什么呢 在前面几篇博客中我们尝试去实现了MVVM中的数据绑定.命令绑定和事件绑定.貌似实现的差不多了.我最早尝试用MVVM去开发的时候也是这么想的,没有用第三方框架,甚至只是实现了数据绑定和命 ...

  7. python3中内建函数map()与reduce()的使用方法

    map()的使用    map()的使用方法形如map(f(x),Itera).对,它有两个参数,第一个参数为某个函数,第二个为可迭代对象.如果不懂什么是函数,不懂什么是可迭代对象没关系,记住下面的例 ...

  8. K/V式枚举

    public enum OType { LOGIN { public String getDesc() { return "登录"; } }, ADD { public Strin ...

  9. ActiveMQ:初见&安装试运行

    官网:http://activemq.apache.org/ ActiveMQ是一个消息中间件,在大型互联网应用中有广泛的使用. 当前最新版本:5.15.4,发布于2018-05-22,开源.Apac ...

  10. 2017-2018-2 20165301 实验四《Java面向对象程序设计》实验报告

    2017-2018-2 20165301 实验四<Java面向对象程序设计>实验报告 一.Android Stuidio的安装测试 实验要求: 参考<Java和Android开发学习 ...