Feel Good
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 18449   Accepted: 5125
Case Time Limit: 1000MS   Special Judge

Description

Bill is developing a new mathematical theory for human emotions. His recent investigations are dedicated to studying how good or bad days influent people's memories about some period of life.

A new idea Bill has recently developed assigns a non-negative integer value to each day of human life.

Bill calls this value the emotional value of the day. The greater the emotional value is, the better the daywas. Bill suggests that the value of some period of human life is proportional to the sum of the emotional values of the days in the given period, multiplied by the smallest emotional value of the day in it. This schema reflects that good on average period can be greatly spoiled by one very bad day.

Now Bill is planning to investigate his own life and find the period of his life that had the greatest value. Help him to do so.

Input

The first line of the input contains n - the number of days of Bill's life he is planning to investigate(1 <= n <= 100 000). The rest of the file contains n integer numbers a1, a2, ... an ranging from 0 to 106 - the emotional values of the days. Numbers are separated by spaces and/or line breaks.

Output

Print the greatest value of some period of Bill's life in the first line. And on the second line print two numbers l and r such that the period from l-th to r-th day of Bill's life(inclusive) has the greatest possible value. If there are multiple periods with the greatest possible value,then print any one of them.

Sample Input

6
3 1 6 4 5 2

Sample Output

60
3 5

Source


Solution

题意:找一个区间,使这个区间最小值乘上这个区间的和最大。

用单调栈维护递增,找出以每个$i$为最小值的最远的左右端点即可。

每次弹栈就更新被弹元素的右端点,入栈时更新入栈元素的左端点即可。

(为什么不把题说清楚有多组数据还有spj太垃圾了吧必须要区间最小!!!!)

(真的受不了了为什么poj那么卡aaaaa!!!浪费了我好多好多时间!!!!!!!!【粉转黑!!)

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std; LL a[], pre[];
int stk[], R[], L[], n;
int main() {
while(~scanf("%d", &n)) {
int top = ;
memset(pre, , sizeof(pre));
memset(L, , sizeof(L));
memset(R, , sizeof(R));
for(int i = ; i <= n; i ++) {
scanf("%I64d", &a[i]);
pre[i] = pre[i - ] + a[i];
while(a[i] < a[stk[top]] && top) {
R[stk[top --]] = i - ;
}
L[i] = stk[top] + ;
stk[++ top] = i;
}
while(top) {
R[stk[top --]] = n;
}
LL ans = ; int l, r;
for(int i = ; i <= n; i ++) {
LL tmp = (pre[R[i]] - pre[L[i] - ]) * a[i];
if(tmp > ans) {
ans = tmp;
l = L[i], r = R[i];
}
if(tmp == ans) {
if(R[i] - L[i] + < r - l + ) {
l = L[i], r = R[i];
}
}
}
printf("%I64d\n%d %d\n", ans, l, r);
} return ;
}

【POJ】2796:Feel Good【单调栈】的更多相关文章

  1. poj 2796 Feel Good单调栈

    Feel Good Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20408   Accepted: 5632 Case T ...

  2. poj 2796 Feel Good 单调栈区间问题

    Feel Good 题意:给你一个非负整数数组,定义某个区间的参考值为:区间所有元素的和*区间最小元素.求该数组中的最大参考值以及对应的区间. 比如说有6个数3 1 6 4 5 2 最大参考值为6,4 ...

  3. POJ 3658 Artificial Lake (单调栈)

    题意: 析:利用单调栈,维护一个单调递增的栈,首先在最低的平台开始,每次向两边进行扩展,寻找两边最低的,然后不断更新宽度. 代码如下: #pragma comment(linker, "/S ...

  4. poj 2559 Largest Rectangle(单调栈)

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26549 ...

  5. POJ - 2796 Feel Good 单调递增栈+前缀和

    Feel Good Bill is developing a new mathematical theory for human emotions. His recent investigations ...

  6. POJ 3415 后缀数组+单调栈

    题目大意: 给定A,B两种字符串,问他们当中的长度大于k的公共子串的个数有多少个 这道题目本身理解不难,将两个字符串合并后求出它的后缀数组 然后利用后缀数组求解答案 这里一开始看题解说要用栈的思想,觉 ...

  7. poj 2796 Feel Good 单调队列

    Feel Good Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8753   Accepted: 2367 Case Ti ...

  8. [poj 2796]单调栈

    题目链接:http://poj.org/problem?id=2796 单调栈可以O(n)得到以每个位置为最小值,向左右最多扩展到哪里. #include<cstdio> #include ...

  9. POJ 2796:Feel Good(单调栈)

    http://poj.org/problem?id=2796 题意:给出n个数,问一个区间里面最小的元素*这个区间元素的和的最大值是多少. 思路:只想到了O(n^2)的做法. 参考了http://ww ...

  10. POJ 2796 Feel Good 【单调栈】

    传送门:http://poj.org/problem?id=2796 题意:给你一串数字,需要你求出(某个子区间乘以这段区间中的最小值)所得到的最大值 例子: 6 3 1 6 4 5 2 当L=3,R ...

随机推荐

  1. 浅析Postgres中的并发控制(Concurrency Control)与事务特性(上)

    转载:https://www.cnblogs.com/flying-tiger/p/9567213.html#4121483#undefined PostgreSQL为开发者提供了一组丰富的工具来管理 ...

  2. aarch64_p2

    perl-Crypt-URandom-0.36-6.fc26.noarch.rpm 2017-02-12 07:17 16K fedora Mirroring Project perl-Crypt-X ...

  3. Percona XtraBackup 实现全备&增量备份与恢复【转】

    percona-xtrabackup主要是有两个工具,其中一个是xtrabackup,一个是innobackupex,后者是前者封装后的一个脚本.在针对MySQL的物理备份工具中,大概是最流行也是最强 ...

  4. 如何使用vs2012单步调试uGUI(unity3d 5.3f4)

    下载uGUI源代码 uGUI源代码地址:https://bitbucket.org/Unity-Technologies/ui 下载代码工具:tortoisehg-3.6.2-x64.msi http ...

  5. mysql自增id归0

    mysql自增id归0 ALTER TABLE table_name AUTO_INCREMENT=1;

  6. opencv之dft及mat类型转换

    跑实验时用到dft这个函数,根据教程,需要先将其扩充到最优尺寸,但我用逆变换后发现得到的mat的维数竟然不一样.因此还是不要扩展尺寸了. 参考:http://www.xpc-yx.com/2014/1 ...

  7. 使用dos命令创建多模块Maven项目

    好吧,咱们接着上一篇博客继续用另一种方式来创建Maven项目.不过在创建之前我们应该先熟悉一些相关dos命令. 创建web项目命令: mvn archetype:generate -DgroupId= ...

  8. C++静态成员的应用

    当在类外部定义静态成员时,不能重复使用static关键字 静态成员函数不包含this指针(无论是显示还是隐式使用) 静态成员可以通过类对象进行访问,也可以通过类进行访问 静态成员不是由构造函数初始化的 ...

  9. webpack性能优化-实战

    题外话:年初项目重构上线,项目技术栈使用vue+webpack,测试执行整个打包流程需要10分钟,同时又因涉及三个渠道,部署好环境就需半个小时,这严重延误了上线进度,因此提高webpack构建效率,成 ...

  10. MySQL学习笔记:delete from与truncate table的区别

    在Mysql数据库的使用过程中,删除表数据可以通过以下2种方式: delete from table_name truncate table table_name (1)delete from语句可以 ...