Andrew Ng Machine Learning 专题【Linear Regression】
此文是斯坦福大学,机器学习界 superstar — Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记。
力求简洁,仅代表本人观点,不足之处希望大家探讨。
课程网址:https://www.coursera.org/learn/machine-learning/home/welcome
Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/article/details/47398843
Week 2:Linear Regression with Multiple Variables
- Multivariate Linear Regression
- Week 1 讨论仅一个特征,即仅有一个未知量x 影响了目标y 的取值。
假设如今有非常多特征?如今我们有x 1 ,x 2 ...x n 影响了目标y 的取值。
- 此时须要区分的是变量标记规则:
- x i 表示的是第i 个特征
- x (i) 表示的是第i 个样本,一个样本是由多个特征组成的列向量
- 比如:x (2) =[x (2) 1 ,x (2) 2 ,x (2) 3 ,...,x (2) n ] T
- 综上,我们有h θ (x)=θ 0 +θ 1 ∗x 1 +θ 2 ∗x 2 +...+θ n ∗x n 。能够视为。每一个样本都多出一个特征:x 0 =1 ,这样表示有利于之后的矩阵表示
- Week 1 讨论仅一个特征,即仅有一个未知量x 影响了目标y 的取值。
多变量梯度下降法:
样本一共同拥有m个
cost function:J(θ 0 ,θ 1 )=12m ∑ i=1 m (h θ (x (i) )−y (i) ) 2
update:θ j :=θ j −α1m ∑ i=1 m ((h θ (x (i) )−y (i) )∗x (i) j )Feature Scaling(特征缩放)
- 非常easy。就是将每种特征的数据范围限定在同一个数量级。比如x 1 ∈[0,2000],x 2 ∈[1,5] ,这样会导致迭代次数过多。这时候,假设我们找到一种mapping方式,使得两者属于同一个数量级的范围内,能够有效减少迭代次数
- 注意:无法减少单次的迭代时间。可是却能有效地减少迭代次数
- 事实上方法非常多,这有一种:x=x−mean(x)max(x)−min(x) 。当中,mean(x) 表示向量每一个元素的平均值。max(x) 表示向量中最大元素,min(x) 表示向量中最小元素
- Learning Rate
- learning rate 是机器学习中的一个不稳定因素,怎样推断选取的 learning rate 是合适的?我们能够看看下面这幅图:
- 假设以迭代次数为横坐标,cost function 结果为纵坐标。绘制的图像是递减的,说明 learning rate 选择的是恰当的。假设碰到下图所显示的三种情况。那就仅仅有一条路:减小 learning rate
- 可是 learning rate 太小相同会导致一个问题:学习过慢。所以,仅仅能靠试:0.001。0.003,0.01,0.03,0.1,0.3……
- learning rate 是机器学习中的一个不稳定因素,怎样推断选取的 learning rate 是合适的?我们能够看看下面这幅图:
- Polynomial Regression(多项式回归。不同于多变量线性回归)
- 有时候。我们须要自己创造一些“特征”,来拟合一些非线性分布情况
- 比如:h θ (x)=θ 0 +θ 1 ∗x 2 +θ 2 ∗x √ ,看上去仅仅有一个特征x ,但我们全然能够理解为x 2 和x √ 都是单独的新特征
- 以后的课程会详细讲述怎样选择这些特征
- Normal Equation
- 梯度下降法能够用于寻找函数(cost function)的最小值。想一想,初高中的时候我们使用的是什么方法?最小值点的导数为零,然后解方程
- 将导数置为零这样的方法即 Normal Equation。if θ∈R n+1 ,∂∂θ i J(θ)= set 0 for every i .
- 上文提过,添加一个全1分量x 0 后得到x=[x 0 ,x 1 ,x 2 ,x 3 ,...,x n ] T
- 能够得到:xθ=y⇛x T xθ=x T y⇛θ=(x T x) −1 x T y
- matlab编程十分简单:theta=pinv(X ′ ∗X)∗X ′ ∗y;
- Normal Equation 有下面优缺点:
- 不须要 learning rate,也就不须要选择。
- 不须要迭代,不须要考虑收敛的问题;
- 当特征非常多的时候。由于涉及求逆操作,会非常慢(注:方阵才有逆矩阵)
- Octave Tutorial
这一部分十分简单。事实上就是MATLAB的用法。建议不论是否刚開始学习的人都去看看,会有收获。谈到一个问题:假设现有的样本数,小于每一个样本全部的特征数怎么办?去除多余的特征(PCA?)。特征过多,也可能会导致矩阵不可逆的情况(不甚理解)。
下面记录一些认为挺有趣的命令:- ~=:不等于号
- xor(0, 1):异或操作
- rand(m, n):0~1之间的大小为m*n的随机数矩阵;randn:产生均值为0,方差为1的符合正态分布的随机数(有负数)
- length(A):返回A中行、列中更大值
- A(:):将矩阵A变为列向量形式。不论A是向量还是矩阵
- sum(A,1):每列求和得到一个行向量;sum(A,2):每行求和得到一个列向量
- pinv:伪求逆;inv:求逆
- imagesc(A):帅爆!依据矩阵中每一个值绘制各种颜色的方块
- A.^2 ~= A^2,后者是两个矩阵相乘
- Submitting Programming Assignments
事实上看看视频即可了。主要要注意,submit() 时输入的Token,不是Coursera 的password,而是作业的password,在这里:
编程作业答案:https://github.com/cnauroth/machine-learning-class
Andrew Ng Machine Learning 专题【Linear Regression】的更多相关文章
- Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...
- [C2P2] Andrew Ng - Machine Learning
##Linear Regression with One Variable Linear regression predicts a real-valued output based on an in ...
- Machine Learning #Lab1# Linear Regression
Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞 ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- CheeseZH: Stanford University: Machine Learning Ex1:Linear Regression
(1) How to comput the Cost function in Univirate/Multivariate Linear Regression; (2) How to comput t ...
- [C2P1] Andrew Ng - Machine Learning
About this Course Machine learning is the science of getting computers to act without being explicit ...
- Andrew Ng机器学习 一: Linear Regression
一:单变量线性回归(Linear regression with one variable) 背景:在某城市开办饭馆,我们有这样的数据集ex1data1.txt,第一列代表某个城市的人口,第二列代表在 ...
- machine learning (2)-linear regression with one variable
machine learning- linear regression with one variable(2) Linear regression with one variable = univa ...
- Andrew Ng Machine learning Introduction
1. 机器学习的定义:Machine learning is programming computers to optimize a performance criterion(优化性能标准) usi ...
随机推荐
- BeautifulSoup与Xpath解析库总结
一.BeautifulSoup解析库 1.快速开始 html_doc = """ <html><head><title>The Dor ...
- python语法(一)
Python是一种面向对象.直译式电脑编程语言,也是一种功能强大的通用型语言,已经具有近二十年的发展历史,成熟且稳定.在近几年,大数据,人工智能火起来之后也是水涨船高,被越来越多的人知道,并且越来越多 ...
- 如何破解安卓App
韩梦飞沙 yue31313 韩亚飞 han_meng_fei_sha 313134555@qq.com 如何破解安卓App
- BlocksKit(2)-DynamicDelegate
BlocksKit(2)-DynamicDelegate 动态代理可以说是这个Block里面最精彩的一部分了,可以通过自己给一个类的的协议方法指定对应的block来实现让这个协议的回调都直接在bloc ...
- java设计模式(三)模板模式
抽象类中公开定义了执行它的方法的方式,子类可以按需求重写方法实现,但调用将以抽象类中定义的方式进行,典型应用如银行办理业务流程.冲泡饮料流程.下面给出简单例子,用沸水冲泡饮料,分为四步:将水煮沸.泡制 ...
- 鸟哥的私房菜:Bash shell(三)-命令别名与历史指令
一 命令别名设定: alias, unalias 命令别名是一个很有趣的东西,特别是你的惯用指令特别长的时候!还有, 增设预设的属性在一些惯用的指令上面,可以预防一些不小心误杀档案的情况发生的时候! ...
- 监控 Linux 系统的 7 个命令行工具
监控 Linux 系统的 7 个命令行工具: " 深入 关于Linux最棒的一件事之一是你能深入操作系统,来探索它是如何工作的,并寻找机会来微调性能或诊断问题.这里有一些基本的命令行工具,让 ...
- 洛谷P3119 USACO15JAN 草鉴定
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- 和程序有关的一个游戏<<mu complex>> 攻略
最速打法: 1 - login, brucedayton 2 - login, allomoto 3 - login, m3g4pa55word 4 - unlock, 03/18/34 5 - ss ...
- 使用TensorFlow高级别的API进行编程
这里涉及到的高级别API主要是使用Estimator类来编写机器学习的程序,此外你还需要用到一些数据导入的知识. 为什么使用Estimator Estimator类是定义在tf.estimator.E ...