A windmill animation works as follows:
A two-dimensional set of points, no three of which lie on a line is chosen. Then one of the points is chosen (as the first pivot) and a line is drawn through the chosen point at some initial angle. The animation proceeds by rotating the line counter-clockwise about the pivot at a constant rate. When the line hits another of the points, that point becomes the new pivot point. In the two examples below, the points are (-1,1), (1,1), (0,0), (-1,-2) and (1,-2).

Example 1

In Example 1, the start point is point 1 and the line starts rotated 45 degrees from horizontal. When the line rotates to 90 degrees, point 4 is hit and becomes the new pivot. Then point 5 becomes the new pivot, then point 2 then point 1.

Example 2

In Example 2, the initial point is point 3 and the line starts horizontal. At 45 degrees, point 2 becomes the pivot, then at about 56 degrees, point 4 becomes the pivot. At about 63 degrees, point 3 becomes the pivot again, then point 5, point 1 and back to 3 as at the start.

Write a program, which takes as input the points of the set, the initial point and the initial line angle and outputs the sequence of pivot points.

 
Input
The first line of input contains a single integer P, (1<= P <= 1000), which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of multiple lines of input. The first line of each data set consists of four space- separated decimal integers followed by a single floating-point value. The first integer is the data set number. The second integer is the number of points M to follow (3 <= M <= 20). The third integer gives the number, s , of the pivot points to output (3 <= s <= 20) and the fourth integer gives the index, I, of the initial point (1 <= I <= M). The floating-point value is the angle, A, in degrees, that the initial line is rotated counter-clockwise from horizontal (0 <= A < 180).

The remaining M lines in the data set contain the coordinates of the set of points. Each line consists of an integer, the point.s index, I, and two floating-point values, the X and Y coordinates of the point respectively.

 
Output
For each data set there is a single line of output. It contains the data set number, followed by s space separated point indices (excluding the initial point index).

 
Sample Input
2
1 5 5 1 45
1 -1 1
2 1 1
3 0 0
4 -1 -2
5 1 -2
2 5 7 3 0
1 -1 1
2 1 1
3 0 0
4 -1 -2
5 1 -2
 
Sample Output
1 4 5 2 1 4
2 2 4 3 5 1 3 2
题目分析:
可谓说是一道简单模拟题,而且数据范围也很小。
首先,对于每个点,与其他任何一点结对时,通过斜率求出轴正方向的夹角,范围应该是在0~pi,
然后就是从给定初始点进行模拟呗,对于其他点(除之前传到它的那点),因为是逆时针旋转,所以
对于两点角度mc[st][j]大于现在角度du的,角度之差为mc[st][j]-du,否则,将所得值加上pi,所有点
中,得到最小差值的点即为下一个传递点,更新st pre(之前点) du 的值,这样循环s次就可以了
 
# include<iostream>
# include<cstring>
# include<cstdio>
# include<cmath>
# define pi (4.0*atan(1.0))
using namespace std;
struct
{
double x,y;
} a[25];
double mc[25][25];
int ca,m,s,st;
double du;
int ans[25];
void creat()
{
int i,j;
for (i=1;i<m;i++)
for (j=i+1;j<=m;j++)
{
double angle;
if (a[i].x==a[j].x)//横坐标相等的情况特判一下
{
mc[i][j]=pi/2;
mc[j][i]=mc[i][j];
continue;
}
angle=atan((a[i].y-a[j].y)/(a[i].x-a[j].x));
if (angle<0) angle=angle+pi;
mc[i][j]=angle;
if (mc[i][j]==pi) mc[i][j]=0;
mc[j][i]=mc[i][j];
}
}
void solve()
{
int i,j,pre=st;
du=du/180*pi;
for (i=1;i<=s;i++)
{
double min=-1;
int k=0;
for (j=1;j<=m;j++)
if (st!=j&&pre!=j)
{
double pp;
pp=mc[st][j]-du;
if (pp<0) pp=pp+pi;
if (min==-1||min>pp)
{
min=pp;
k=j;
}
}
pre=st; //更新之前点pre的值
du=mc[st][k]; //更新度数
st=k;//更新当前点的值
ans[i]=k;//记录每一步所到的点
}
}
int main()
{
int p;
scanf("%d",&p);
while (p--)
{
int i;
scanf("%d%d%d%d%lf",&ca,&m,&s,&st,&du);
for (i=1;i<=m;i++) scanf("%d%lf%lf",&i,&a[i].x,&a[i].y);
printf("%d ",ca);
creat(); //构造任意两点角度的二维矩阵
solve(); //模拟s次
for (i=1;i<=s;i++)
if (i<s) printf("%d ",ans[i]);
else printf("%d\n",ans[i]);
}
return 0;
}
/*
该题反映的问题:
1、# define pi 4.0*atan(1.0) 是将4.0*atan(1.0)整体替代pi的位置,
所以应该将pi后面的全部打上括号
2、低级错误,题目没看清楚,坐标的读入应该用实数
*/

hdu 4491 Windmill Animation的更多相关文章

  1. hdu4491 Windmill Animation (几何)

    Windmill Animation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. hdu4491 Windmill Animation(计算几何)

    Windmill Animation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. css3 animation实现风车转动

    项目中经常有用到动画效果,比如Loading.风车转动等等.最简单的办法是使用gif,但是gif在半透明背景下有白边,体验不友好,好在现在可以使用css3的anmiation来实现动画效果,极大的提升 ...

  4. 利用CSS3 animation绘制动态卡通人物,无需使用JS代码

    此外博主原创,转载请注明出处:谢谢~ 效果图: 其中云.风车.尾巴是动态的: 以下是代码: <!DOCTYPE html> <html lang="en"> ...

  5. css3 animation 点亮灯光效果

    <style> .wrap .bulb { position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50% ...

  6. CSS 3学习——animation动画

    以下内容根据官方文档翻译以及自己的理解整理. 1.  介绍 本方案介绍动画(animations).通过动画,开发者可以将CSS属性值的变化指定为一个随时间变化的关键帧(keyframes)的集合.在 ...

  7. 虾扯蛋:Android View动画 Animation不完全解析

    本文结合一些周知的概念和源码片段,对View动画的工作原理进行挖掘和分析.以下不是对源码一丝不苟的分析过程,只是以搞清楚Animation的执行过程.如何被周期性调用为目标粗略分析下相关方法的执行细节 ...

  8. 实现了一个百度首页的彩蛋——CSS3 Animation简介

    在百度搜索中有这样一个彩蛋:搜索“旋转”,“跳跃”,“反转”等词语,会出现相应的动画效果(搜索“反转”后的效果).查看源码可以发现,这些效果正是通过CSS3的animation属性实现的. 实现这个彩 ...

  9. 深入理解CSS3 Animation 帧动画

    CSS3我在5年之前就有用了,包括公司项目都一直在很前沿的技术. 最近在写慕课网的七夕主题,用了大量的CSS3动画,但是真的沉淀下来仔细的去深入CSS3动画的各个属性发现还是很深的,这里就写下关于帧动 ...

随机推荐

  1. c#程序员机试题

    一.题目: 有一数组: int[] arr = new int[] { 48,1,3,55,15,29,12,33,26,41,56,32}; 1.求出最大值 2.按每个数字的10位数分组(说明:0~ ...

  2. OpenStack计费项目Cloudkitty系列详解(一)

    云计算是一种按需付费的服务模式,虽然OpenStack前期在计量方面走了些“弯路”,但现在的ceilometer.gnocchi.aodh.panko项目的稳步并进算是让其峰回路转.然而,目前来看Op ...

  3. [BZOJ 4809] 相逢是问候

    Link: 传送门 Solution: 以前没见过的套路题…… 1.使用EXT欧拉定理降幂的套路: $a^{x}=a^{xmod\phi(P)+\phi(P)} mod P$,且$x\ge P$ 这样 ...

  4. 【set】【可持久化Trie】The 16th UESTC Programming Contest Preliminary K - Will the circle be broken

    题意:You are given an array A of N non-negative integers and an integer M. Find the number of pair(i,j ...

  5. 【Codeforces528D】Fuzzy Search FFT

    D. Fuzzy Search time limit per test:3 seconds memory limit per test:256 megabytes input:standard inp ...

  6. 洛谷OJ U552 守墓人 线段树模板题

    题目描述 Description 在一个荒凉的墓地上 有一个令人尊敬的守墓人, 他看守的墓地从来 没有被盗过, 所以人们很放心的把自己的先人的墓 安顿在他那 守墓人能看好这片墓地是必然而不是偶然... ...

  7. Charles基本使用—http抓包、手机抓包、数据篡改

    本文主要介绍如下内容: 1.Charles如何抓取HTTP报文 2.Charles如何抓取手机上的HTTP包 3.使用Charles篡改数据信息 一.Charles抓取HTTP包 1.Charles的 ...

  8. 使用 Headless Chrome 进行页面渲染 - 知乎专栏

    使用 Headless Chrome 进行页面渲染 - 知乎专栏 使用 Headless Chrome 进行页面渲染 - 知乎专栏 这里我们使用 chrome-remote-interface 来远程 ...

  9. Backup your Android without root or custom recovery -- adb backup

    ecently discovered a neat new way to back up apps on my Android without having to use Titanium Backu ...

  10. BeeProg2C Extremely fast universal USB interfaced programmer

    http://www.elnec.com/products/universal-programmers/beeprog2c/ FPGA based totally reconfigurable 48  ...